Library rt.util.powerset
Require Import rt.util.tactics.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop tuple.
Section PowerSet.
(* Based on https://www.ps.uni-saarland.de/formalizations/fset/html/libs.fset.html *)
Definition powerset {T: eqType} (l: seq T) : seq (seq T) :=
let mT := ((size l).-tuple bool) in
(map (fun m : mT ⇒ (mask m l)) (enum {: mT})).
Lemma mem_powerset {T: eqType} (x: seq T) y :
y ∈ (powerset x) → {subset y ≤ x}.
Proof.
intros POW; red; intros z IN; unfold powerset in POW.
move: POW ⇒ /mapP POW; destruct POW as [pair POW EQ]; subst.
by apply mem_mask with (m := pair).
Qed.
End PowerSet.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop tuple.
Section PowerSet.
(* Based on https://www.ps.uni-saarland.de/formalizations/fset/html/libs.fset.html *)
Definition powerset {T: eqType} (l: seq T) : seq (seq T) :=
let mT := ((size l).-tuple bool) in
(map (fun m : mT ⇒ (mask m l)) (enum {: mT})).
Lemma mem_powerset {T: eqType} (x: seq T) y :
y ∈ (powerset x) → {subset y ≤ x}.
Proof.
intros POW; red; intros z IN; unfold powerset in POW.
move: POW ⇒ /mapP POW; destruct POW as [pair POW EQ]; subst.
by apply mem_mask with (m := pair).
Qed.
End PowerSet.