Library rt.util.seqset
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq fintype.
Section SeqSet.
(* Let T be any type with decidable equality. *)
Context {T: eqType}.
(* We define a set as a sequence that has no duplicates. *)
Record set :=
{
_set_seq :> seq T ;
_ : uniq _set_seq (* no duplicates *)
}.
(* Now we add the ssreflect boilerplate code. *)
Canonical Structure setSubType := [subType for _set_seq].
Definition set_eqMixin := [eqMixin of set by <:].
Canonical Structure set_eqType := EqType set set_eqMixin.
Canonical Structure mem_set_predType := mkPredType (fun (l : set) ⇒ mem_seq (_set_seq l)).
Definition set_of of phant T := set.
End SeqSet.
Notation " {set R } " := (set_of (Phant R)).
Section Lemmas.
Context {T: eqType}.
Variable s: {set T}.
Lemma set_uniq : uniq s.
Proof.
by destruct s.
Qed.
Lemma set_mem : ∀ x, (x ∈ s) = (x ∈ _set_seq s).
Proof.
by intros x; destruct s.
Qed.
End Lemmas.
Section LemmasFinType.
Context {T: finType}.
Variable s: {set T}.
Lemma set_card : #|s| = size s.
Proof.
have UNIQ: uniq s by destruct s.
by move: UNIQ ⇒ /card_uniqP →.
Qed.
End LemmasFinType.
Section SeqSet.
(* Let T be any type with decidable equality. *)
Context {T: eqType}.
(* We define a set as a sequence that has no duplicates. *)
Record set :=
{
_set_seq :> seq T ;
_ : uniq _set_seq (* no duplicates *)
}.
(* Now we add the ssreflect boilerplate code. *)
Canonical Structure setSubType := [subType for _set_seq].
Definition set_eqMixin := [eqMixin of set by <:].
Canonical Structure set_eqType := EqType set set_eqMixin.
Canonical Structure mem_set_predType := mkPredType (fun (l : set) ⇒ mem_seq (_set_seq l)).
Definition set_of of phant T := set.
End SeqSet.
Notation " {set R } " := (set_of (Phant R)).
Section Lemmas.
Context {T: eqType}.
Variable s: {set T}.
Lemma set_uniq : uniq s.
Proof.
by destruct s.
Qed.
Lemma set_mem : ∀ x, (x ∈ s) = (x ∈ _set_seq s).
Proof.
by intros x; destruct s.
Qed.
End Lemmas.
Section LemmasFinType.
Context {T: finType}.
Variable s: {set T}.
Lemma set_card : #|s| = size s.
Proof.
have UNIQ: uniq s by destruct s.
by move: UNIQ ⇒ /card_uniqP →.
Qed.
End LemmasFinType.