Library rt.implementation.uni.jitter.arrival_sequence
Require Import rt.util.all.
Require Import rt.model.arrival.basic.arrival_sequence rt.model.arrival.basic.task rt.model.arrival.basic.task_arrival rt.model.arrival.basic.job.
Require Import rt.implementation.uni.jitter.task
rt.implementation.uni.jitter.job.
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat eqtype seq div.
Module ConcreteArrivalSequence.
Import Job ArrivalSequence ConcreteTask ConcreteJob SporadicTaskset TaskArrival.
Section PeriodicArrivals.
Variable ts: concrete_taskset.
(* At any time t, we release Some job of tsk if t is a multiple of the period,
otherwise we release None. *)
Definition add_job (arr_time: time) (tsk: concrete_task) :=
if task_period tsk %| arr_time then
Some (Build_concrete_job (arr_time %/ task_period tsk) arr_time
(task_cost tsk) (task_deadline tsk) tsk)
else
None.
(* The arrival sequence at any time t is simply the partial map of add_job. *)
Definition periodic_arrival_sequence (t: time) := pmap (add_job t) ts.
End PeriodicArrivals.
Section Proofs.
(* Let ts be any concrete task set with valid parameters. *)
Variable ts: concrete_taskset.
(* Regarding the periodic arrival sequence built from ts, we prove that...*)
Let arr_seq := periodic_arrival_sequence ts.
(* ... arrival times are consistent, ... *)
Theorem periodic_arrivals_are_consistent:
arrival_times_are_consistent job_arrival arr_seq.
Proof.
move ⇒ j t ARRj.
rewrite /arrives_at mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset:
∀ j,
arrives_in arr_seq j →
job_task j \in ts.
Proof.
move ⇒ j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ... job arrivals satisfy the sporadic task model, ... *)
Theorem periodic_arrivals_are_sporadic:
sporadic_task_model task_period job_arrival job_task arr_seq.
Proof.
move ⇒ j j' /eqP DIFF [arr ARR] [arr' ARR'] SAMEtsk LE.
rewrite eqE /= /job_eqdef negb_and /= SAMEtsk eq_refl orbF in DIFF.
rewrite 2!mem_pmap in ARR ARR'.
move: ARR ARR' ⇒ /mapP [tsk_j INj SOMEj] /mapP [tsk_j' INj' SOMEj'].
unfold add_job in SOMEj, SOMEj'; desf; simpl in *;
move: Heq0 Heq ⇒ /dvdnP [k DIV] /dvdnP [k' DIV'].
{
rewrite DIV DIV' -mulSnr.
rewrite leq_eqVlt in LE; move: LE ⇒ /orP [/eqP EQ | LESS].
{
exfalso; move: DIFF ⇒ /negP DIFF; apply DIFF.
by subst; rewrite EQ !eq_refl.
}
subst; rewrite leq_mul2r; apply/orP; right.
by rewrite ltn_mul2r in LESS; move: LESS ⇒ /andP [_ LT].
}
Qed.
(* ... and the arrival sequence has no duplicate jobs. *)
Theorem periodic_arrivals_is_a_set:
arrival_sequence_is_a_set arr_seq.
Proof.
intros t.
unfold arr_seq, periodic_arrival_sequence.
apply (pmap_uniq) with (g := job_task); last by destruct ts.
by unfold add_job, ocancel; intro tsk; desf.
Qed.
(* We also show that job costs are bounded by task costs... *)
Theorem periodic_arrivals_job_cost_le_task_cost:
∀ j,
arrives_in arr_seq j →
job_cost j ≤ task_cost (job_task j).
Proof.
intros j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP [tsk_j INj SOMEj].
by unfold add_job in SOMEj; desf.
Qed.
(* ...and that job deadlines equal task deadlines. *)
Theorem periodic_arrivals_job_deadline_eq_task_deadline:
∀ j,
arrives_in arr_seq j →
job_deadline j = task_deadline (job_task j).
Proof.
intros j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP [tsk_j INj SOMEj].
by unfold add_job in SOMEj; desf.
Qed.
End Proofs.
End ConcreteArrivalSequence.
Require Import rt.model.arrival.basic.arrival_sequence rt.model.arrival.basic.task rt.model.arrival.basic.task_arrival rt.model.arrival.basic.job.
Require Import rt.implementation.uni.jitter.task
rt.implementation.uni.jitter.job.
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat eqtype seq div.
Module ConcreteArrivalSequence.
Import Job ArrivalSequence ConcreteTask ConcreteJob SporadicTaskset TaskArrival.
Section PeriodicArrivals.
Variable ts: concrete_taskset.
(* At any time t, we release Some job of tsk if t is a multiple of the period,
otherwise we release None. *)
Definition add_job (arr_time: time) (tsk: concrete_task) :=
if task_period tsk %| arr_time then
Some (Build_concrete_job (arr_time %/ task_period tsk) arr_time
(task_cost tsk) (task_deadline tsk) tsk)
else
None.
(* The arrival sequence at any time t is simply the partial map of add_job. *)
Definition periodic_arrival_sequence (t: time) := pmap (add_job t) ts.
End PeriodicArrivals.
Section Proofs.
(* Let ts be any concrete task set with valid parameters. *)
Variable ts: concrete_taskset.
(* Regarding the periodic arrival sequence built from ts, we prove that...*)
Let arr_seq := periodic_arrival_sequence ts.
(* ... arrival times are consistent, ... *)
Theorem periodic_arrivals_are_consistent:
arrival_times_are_consistent job_arrival arr_seq.
Proof.
move ⇒ j t ARRj.
rewrite /arrives_at mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset:
∀ j,
arrives_in arr_seq j →
job_task j \in ts.
Proof.
move ⇒ j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ... job arrivals satisfy the sporadic task model, ... *)
Theorem periodic_arrivals_are_sporadic:
sporadic_task_model task_period job_arrival job_task arr_seq.
Proof.
move ⇒ j j' /eqP DIFF [arr ARR] [arr' ARR'] SAMEtsk LE.
rewrite eqE /= /job_eqdef negb_and /= SAMEtsk eq_refl orbF in DIFF.
rewrite 2!mem_pmap in ARR ARR'.
move: ARR ARR' ⇒ /mapP [tsk_j INj SOMEj] /mapP [tsk_j' INj' SOMEj'].
unfold add_job in SOMEj, SOMEj'; desf; simpl in *;
move: Heq0 Heq ⇒ /dvdnP [k DIV] /dvdnP [k' DIV'].
{
rewrite DIV DIV' -mulSnr.
rewrite leq_eqVlt in LE; move: LE ⇒ /orP [/eqP EQ | LESS].
{
exfalso; move: DIFF ⇒ /negP DIFF; apply DIFF.
by subst; rewrite EQ !eq_refl.
}
subst; rewrite leq_mul2r; apply/orP; right.
by rewrite ltn_mul2r in LESS; move: LESS ⇒ /andP [_ LT].
}
Qed.
(* ... and the arrival sequence has no duplicate jobs. *)
Theorem periodic_arrivals_is_a_set:
arrival_sequence_is_a_set arr_seq.
Proof.
intros t.
unfold arr_seq, periodic_arrival_sequence.
apply (pmap_uniq) with (g := job_task); last by destruct ts.
by unfold add_job, ocancel; intro tsk; desf.
Qed.
(* We also show that job costs are bounded by task costs... *)
Theorem periodic_arrivals_job_cost_le_task_cost:
∀ j,
arrives_in arr_seq j →
job_cost j ≤ task_cost (job_task j).
Proof.
intros j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP [tsk_j INj SOMEj].
by unfold add_job in SOMEj; desf.
Qed.
(* ...and that job deadlines equal task deadlines. *)
Theorem periodic_arrivals_job_deadline_eq_task_deadline:
∀ j,
arrives_in arr_seq j →
job_deadline j = task_deadline (job_task j).
Proof.
intros j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP [tsk_j INj SOMEj].
by unfold add_job in SOMEj; desf.
Qed.
End Proofs.
End ConcreteArrivalSequence.