Library rt.model.schedule.global.basic.interference_edf
Require Import rt.util.all.
Require Import rt.model.arrival.basic.task rt.model.arrival.basic.job rt.model.priority rt.model.arrival.basic.task_arrival.
Require Import rt.model.schedule.global.basic.schedule rt.model.schedule.global.basic.interference
rt.model.schedule.global.basic.platform.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype bigop.
Module InterferenceEDF.
Import Schedule Priority Platform Interference Priority.
Section Lemmas.
Context {Job: eqType}.
Variable job_arrival: Job → time.
Variable job_cost: Job → time.
Variable job_deadline: Job → time.
(* Assume any job arrival sequence... *)
Context {arr_seq: arrival_sequence Job}.
(* Consider any schedule. *)
Variable num_cpus: nat.
Variable sched: schedule Job num_cpus.
(* Assume that the schedule satisfies the global scheduling invariant
for EDF, i.e., if any job of tsk is backlogged, every processor
must be busy with jobs with no larger absolute deadline. *)
Hypothesis H_scheduler_uses_EDF:
respects_JLFP_policy job_arrival job_cost arr_seq sched (EDF job_arrival job_deadline).
(* Under EDF scheduling, a job only causes interference if its deadline
is not larger than the deadline of the analyzed job. *)
Lemma interference_under_edf_implies_shorter_deadlines :
∀ j j' t1 t2,
arrives_in arr_seq j →
arrives_in arr_seq j' →
job_interference job_arrival job_cost sched j' j t1 t2 != 0 →
job_arrival j + job_deadline j ≤ job_arrival j' + job_deadline j'.
Proof.
rename H_scheduler_uses_EDF into PRIO.
intros j j' t1 t2 ARR1 ARR2 INTERF.
unfold job_interference in INTERF.
destruct ([∃ t': 'I_t2,
[∃ cpu: processor num_cpus,
(t' ≥ t1) &&
backlogged job_arrival job_cost sched j' t' &&
scheduled_on sched j cpu t']]) eqn:EX.
{
move: EX ⇒ /existsP [t' /existsP [cpu /andP [/andP [LE BACK] SCHED]]].
apply PRIO with (t := t'); try (by done).
by apply/existsP; ∃ cpu.
}
{
apply negbT in EX; rewrite negb_exists in EX; move: EX ⇒ /forallP ALL.
rewrite big_nat_cond (eq_bigr (fun x ⇒ 0)) in INTERF;
first by rewrite -big_nat_cond big_const_nat iter_addn mul0n addn0 eq_refl in INTERF.
move ⇒ i /andP [/andP [GEi LTi] _].
specialize (ALL (Ordinal LTi)).
rewrite negb_exists in ALL.
move: ALL ⇒ /forallP ALL.
rewrite (eq_bigr (fun x ⇒ 0));
first by rewrite big_const_ord iter_addn mul0n addn0.
intros cpu _; specialize (ALL cpu); simpl in ALL.
destruct (backlogged job_arrival job_cost sched j' i); last by rewrite andFb.
rewrite GEi 2!andTb in ALL; rewrite andTb.
by apply negbTE in ALL; rewrite ALL.
}
Qed.
End Lemmas.
End InterferenceEDF.
Require Import rt.model.arrival.basic.task rt.model.arrival.basic.job rt.model.priority rt.model.arrival.basic.task_arrival.
Require Import rt.model.schedule.global.basic.schedule rt.model.schedule.global.basic.interference
rt.model.schedule.global.basic.platform.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype bigop.
Module InterferenceEDF.
Import Schedule Priority Platform Interference Priority.
Section Lemmas.
Context {Job: eqType}.
Variable job_arrival: Job → time.
Variable job_cost: Job → time.
Variable job_deadline: Job → time.
(* Assume any job arrival sequence... *)
Context {arr_seq: arrival_sequence Job}.
(* Consider any schedule. *)
Variable num_cpus: nat.
Variable sched: schedule Job num_cpus.
(* Assume that the schedule satisfies the global scheduling invariant
for EDF, i.e., if any job of tsk is backlogged, every processor
must be busy with jobs with no larger absolute deadline. *)
Hypothesis H_scheduler_uses_EDF:
respects_JLFP_policy job_arrival job_cost arr_seq sched (EDF job_arrival job_deadline).
(* Under EDF scheduling, a job only causes interference if its deadline
is not larger than the deadline of the analyzed job. *)
Lemma interference_under_edf_implies_shorter_deadlines :
∀ j j' t1 t2,
arrives_in arr_seq j →
arrives_in arr_seq j' →
job_interference job_arrival job_cost sched j' j t1 t2 != 0 →
job_arrival j + job_deadline j ≤ job_arrival j' + job_deadline j'.
Proof.
rename H_scheduler_uses_EDF into PRIO.
intros j j' t1 t2 ARR1 ARR2 INTERF.
unfold job_interference in INTERF.
destruct ([∃ t': 'I_t2,
[∃ cpu: processor num_cpus,
(t' ≥ t1) &&
backlogged job_arrival job_cost sched j' t' &&
scheduled_on sched j cpu t']]) eqn:EX.
{
move: EX ⇒ /existsP [t' /existsP [cpu /andP [/andP [LE BACK] SCHED]]].
apply PRIO with (t := t'); try (by done).
by apply/existsP; ∃ cpu.
}
{
apply negbT in EX; rewrite negb_exists in EX; move: EX ⇒ /forallP ALL.
rewrite big_nat_cond (eq_bigr (fun x ⇒ 0)) in INTERF;
first by rewrite -big_nat_cond big_const_nat iter_addn mul0n addn0 eq_refl in INTERF.
move ⇒ i /andP [/andP [GEi LTi] _].
specialize (ALL (Ordinal LTi)).
rewrite negb_exists in ALL.
move: ALL ⇒ /forallP ALL.
rewrite (eq_bigr (fun x ⇒ 0));
first by rewrite big_const_ord iter_addn mul0n addn0.
intros cpu _; specialize (ALL cpu); simpl in ALL.
destruct (backlogged job_arrival job_cost sched j' i); last by rewrite andFb.
rewrite GEi 2!andTb in ALL; rewrite andTb.
by apply negbTE in ALL; rewrite ALL.
}
Qed.
End Lemmas.
End InterferenceEDF.