Library rt.model.schedule.global.jitter.interference
Require Import rt.util.all.
Require Import rt.model.arrival.basic.task rt.model.priority rt.model.schedule.global.workload.
Require Import rt.model.schedule.global.jitter.job rt.model.schedule.global.jitter.schedule.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
Require rt.model.schedule.global.basic.interference.
Module Interference.
Import ScheduleOfSporadicTaskWithJitter Priority Workload.
(* We import some of the basic definitions, but we need to re-define almost everything
since the definition of backlogged (and thus the definition of interference)
changes with jitter. *)
Import rt.model.schedule.global.basic.interference.
Export Interference.
Section InterferenceDefs.
Context {sporadic_task: eqType}.
Context {Job: eqType}.
Variable job_arrival: Job → time.
Variable job_cost: Job → time.
Variable job_task: Job → sporadic_task.
Variable job_jitter: Job → time.
(* Consider any job arrival sequence...*)
Variable arr_seq: arrival_sequence Job.
(* ... and any schedule of those jobs. *)
Context {num_cpus: nat}.
Variable sched: schedule Job num_cpus.
(* Consider any job j that incurs interference. *)
Variable j: Job.
(* Recall the definition of backlogged (pending and not scheduled). *)
Let job_is_backlogged := backlogged job_arrival job_cost job_jitter sched j.
(* First, we define total interference. *)
Section TotalInterference.
(* The total interference incurred by job j during [t1, t2) is the
cumulative time in which j is backlogged in this interval. *)
Definition total_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2) job_is_backlogged t.
End TotalInterference.
(* Next, we define job interference. *)
Section JobInterference.
(* Let job_other be a job that interferes with j. *)
Variable job_other: Job.
(* The interference caused by job_other during [t1, t2) is the cumulative
time in which j is backlogged while job_other is scheduled. *)
Definition job_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t &&
scheduled_on sched job_other cpu t).
End JobInterference.
(* Next, we define task interference. *)
Section TaskInterference.
(* In order to define task interference, consider any interfering task tsk_other. *)
Variable tsk_other: sporadic_task.
(* The interference caused by tsk during [t1, t2) is the cumulative time
in which j is backlogged while tsk is scheduled. *)
Definition task_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t &&
task_scheduled_on job_task sched tsk_other cpu t).
End TaskInterference.
(* Next, we define an approximation of the total interference based on
each per-task interference. *)
Section TaskInterferenceJobList.
Variable tsk_other: sporadic_task.
Definition task_interference_joblist (t1 t2: time) :=
\sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j == tsk_other)
job_interference j t1 t2.
End TaskInterferenceJobList.
(* Now we prove some basic lemmas about interference. *)
Section BasicLemmas.
(* First, we show that total interference cannot be larger than the interval length. *)
Lemma total_interference_le_delta :
∀ t1 t2,
total_interference t1 t2 ≤ t2 - t1.
Proof.
unfold total_interference; intros t1 t2.
apply leq_trans with (n := \sum_(t1 ≤ t < t2) 1);
first by apply leq_sum; ins; apply leq_b1.
by rewrite big_const_nat iter_addn mul1n addn0 leqnn.
Qed.
(* Next, we prove that job interference is bounded by the service of the interfering job. *)
Lemma job_interference_le_service :
∀ j_other t1 t2,
job_interference j_other t1 t2 ≤ service_during sched j_other t1 t2.
Proof.
intros j_other t1 t2; unfold job_interference, service_during.
apply leq_sum; intros t _.
unfold service_at; rewrite [\sum_(_ < _ | scheduled_on _ _ _ _)_]big_mkcond.
apply leq_sum; intros cpu _.
destruct (job_is_backlogged t); [rewrite andTb | by rewrite andFb].
by destruct (scheduled_on sched j_other cpu t).
Qed.
(* We also prove that task interference is bounded by the workload of the interfering task. *)
Lemma task_interference_le_workload :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ workload job_task sched tsk t1 t2.
Proof.
unfold task_interference, workload; intros tsk t1 t2.
apply leq_sum; intros t _.
apply leq_sum; intros cpu _.
destruct (job_is_backlogged t); [rewrite andTb | by rewrite andFb].
unfold task_scheduled_on, service_of_task.
by destruct (sched cpu t).
Qed.
End BasicLemmas.
(* Now we prove some bounds on interference for sequential jobs. *)
Section InterferenceSequentialJobs.
(* If jobs are sequential, ... *)
Hypothesis H_sequential_jobs: sequential_jobs sched.
(* ... then the interference incurred by a job in an interval
of length delta is at most delta. *)
Lemma job_interference_le_delta :
∀ j_other t1 delta,
job_interference j_other t1 (t1 + delta) ≤ delta.
Proof.
rename H_sequential_jobs into SEQ.
unfold job_interference, sequential_jobs in ×.
intros j_other t1 delta.
apply leq_trans with (n := \sum_(t1 ≤ t < t1 + delta) 1);
last by rewrite big_const_nat iter_addn mul1n addn0 addKn leqnn.
apply leq_sum; intros t _.
destruct ([∃ cpu, scheduled_on sched j_other cpu t]) eqn:EX.
{
move: EX ⇒ /existsP [cpu SCHED].
rewrite (bigD1 cpu) // /=.
rewrite big_mkcond (eq_bigr (fun x ⇒ 0)) /=;
first by simpl_sum_const; rewrite leq_b1.
intros cpu' _; des_if_goal; last by done.
destruct (scheduled_on sched j_other cpu' t) eqn:SCHED'; last by rewrite andbF.
move: SCHED SCHED' ⇒ /eqP SCHED /eqP SCHED'.
by specialize (SEQ j_other t cpu cpu' SCHED SCHED'); rewrite SEQ in Heq.
}
{
apply negbT in EX; rewrite negb_exists in EX.
move: EX ⇒ /forallP EX.
rewrite (eq_bigr (fun x ⇒ 0)); first by simpl_sum_const.
by intros cpu _; specialize (EX cpu); apply negbTE in EX; rewrite EX andbF.
}
Qed.
End InterferenceSequentialJobs.
(* Next, we show that the cumulative per-task interference bounds the total
interference. *)
Section BoundUsingPerJobInterference.
Lemma interference_le_interference_joblist :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ task_interference_joblist tsk t1 t2.
Proof.
intros tsk t1 t2.
unfold task_interference, task_interference_joblist, job_interference, job_is_backlogged.
rewrite [\sum_(_ <- _ sched _ _ | _) _]exchange_big /=.
rewrite big_nat_cond [\sum_(_ ≤ _ < _ | true) _]big_nat_cond.
apply leq_sum; move ⇒ t /andP [LEt _].
rewrite exchange_big /=.
apply leq_sum; intros cpu _.
destruct (backlogged job_arrival job_cost job_jitter sched j t) eqn:BACK;
last by rewrite andFb (eq_bigr (fun x ⇒ 0));
first by rewrite big_const_seq iter_addn mul0n addn0.
rewrite andTb.
destruct (task_scheduled_on job_task sched tsk cpu t) eqn:SCHED; last by done.
unfold scheduled_on, task_scheduled_on in ×.
destruct (sched cpu t) as [j' |] eqn:SOME; last by done.
rewrite big_mkcond /= (bigD1_seq j') /=; last by apply undup_uniq.
{
by rewrite SCHED eq_refl.
}
{
unfold jobs_scheduled_between.
rewrite mem_undup; apply mem_bigcat_nat with (j := t);
first by done.
apply mem_bigcat_ord with (j := cpu); first by apply ltn_ord.
by unfold make_sequence; rewrite SOME mem_seq1 eq_refl.
}
Qed.
End BoundUsingPerJobInterference.
End InterferenceDefs.
End Interference.
Require Import rt.model.arrival.basic.task rt.model.priority rt.model.schedule.global.workload.
Require Import rt.model.schedule.global.jitter.job rt.model.schedule.global.jitter.schedule.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
Require rt.model.schedule.global.basic.interference.
Module Interference.
Import ScheduleOfSporadicTaskWithJitter Priority Workload.
(* We import some of the basic definitions, but we need to re-define almost everything
since the definition of backlogged (and thus the definition of interference)
changes with jitter. *)
Import rt.model.schedule.global.basic.interference.
Export Interference.
Section InterferenceDefs.
Context {sporadic_task: eqType}.
Context {Job: eqType}.
Variable job_arrival: Job → time.
Variable job_cost: Job → time.
Variable job_task: Job → sporadic_task.
Variable job_jitter: Job → time.
(* Consider any job arrival sequence...*)
Variable arr_seq: arrival_sequence Job.
(* ... and any schedule of those jobs. *)
Context {num_cpus: nat}.
Variable sched: schedule Job num_cpus.
(* Consider any job j that incurs interference. *)
Variable j: Job.
(* Recall the definition of backlogged (pending and not scheduled). *)
Let job_is_backlogged := backlogged job_arrival job_cost job_jitter sched j.
(* First, we define total interference. *)
Section TotalInterference.
(* The total interference incurred by job j during [t1, t2) is the
cumulative time in which j is backlogged in this interval. *)
Definition total_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2) job_is_backlogged t.
End TotalInterference.
(* Next, we define job interference. *)
Section JobInterference.
(* Let job_other be a job that interferes with j. *)
Variable job_other: Job.
(* The interference caused by job_other during [t1, t2) is the cumulative
time in which j is backlogged while job_other is scheduled. *)
Definition job_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t &&
scheduled_on sched job_other cpu t).
End JobInterference.
(* Next, we define task interference. *)
Section TaskInterference.
(* In order to define task interference, consider any interfering task tsk_other. *)
Variable tsk_other: sporadic_task.
(* The interference caused by tsk during [t1, t2) is the cumulative time
in which j is backlogged while tsk is scheduled. *)
Definition task_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t &&
task_scheduled_on job_task sched tsk_other cpu t).
End TaskInterference.
(* Next, we define an approximation of the total interference based on
each per-task interference. *)
Section TaskInterferenceJobList.
Variable tsk_other: sporadic_task.
Definition task_interference_joblist (t1 t2: time) :=
\sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j == tsk_other)
job_interference j t1 t2.
End TaskInterferenceJobList.
(* Now we prove some basic lemmas about interference. *)
Section BasicLemmas.
(* First, we show that total interference cannot be larger than the interval length. *)
Lemma total_interference_le_delta :
∀ t1 t2,
total_interference t1 t2 ≤ t2 - t1.
Proof.
unfold total_interference; intros t1 t2.
apply leq_trans with (n := \sum_(t1 ≤ t < t2) 1);
first by apply leq_sum; ins; apply leq_b1.
by rewrite big_const_nat iter_addn mul1n addn0 leqnn.
Qed.
(* Next, we prove that job interference is bounded by the service of the interfering job. *)
Lemma job_interference_le_service :
∀ j_other t1 t2,
job_interference j_other t1 t2 ≤ service_during sched j_other t1 t2.
Proof.
intros j_other t1 t2; unfold job_interference, service_during.
apply leq_sum; intros t _.
unfold service_at; rewrite [\sum_(_ < _ | scheduled_on _ _ _ _)_]big_mkcond.
apply leq_sum; intros cpu _.
destruct (job_is_backlogged t); [rewrite andTb | by rewrite andFb].
by destruct (scheduled_on sched j_other cpu t).
Qed.
(* We also prove that task interference is bounded by the workload of the interfering task. *)
Lemma task_interference_le_workload :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ workload job_task sched tsk t1 t2.
Proof.
unfold task_interference, workload; intros tsk t1 t2.
apply leq_sum; intros t _.
apply leq_sum; intros cpu _.
destruct (job_is_backlogged t); [rewrite andTb | by rewrite andFb].
unfold task_scheduled_on, service_of_task.
by destruct (sched cpu t).
Qed.
End BasicLemmas.
(* Now we prove some bounds on interference for sequential jobs. *)
Section InterferenceSequentialJobs.
(* If jobs are sequential, ... *)
Hypothesis H_sequential_jobs: sequential_jobs sched.
(* ... then the interference incurred by a job in an interval
of length delta is at most delta. *)
Lemma job_interference_le_delta :
∀ j_other t1 delta,
job_interference j_other t1 (t1 + delta) ≤ delta.
Proof.
rename H_sequential_jobs into SEQ.
unfold job_interference, sequential_jobs in ×.
intros j_other t1 delta.
apply leq_trans with (n := \sum_(t1 ≤ t < t1 + delta) 1);
last by rewrite big_const_nat iter_addn mul1n addn0 addKn leqnn.
apply leq_sum; intros t _.
destruct ([∃ cpu, scheduled_on sched j_other cpu t]) eqn:EX.
{
move: EX ⇒ /existsP [cpu SCHED].
rewrite (bigD1 cpu) // /=.
rewrite big_mkcond (eq_bigr (fun x ⇒ 0)) /=;
first by simpl_sum_const; rewrite leq_b1.
intros cpu' _; des_if_goal; last by done.
destruct (scheduled_on sched j_other cpu' t) eqn:SCHED'; last by rewrite andbF.
move: SCHED SCHED' ⇒ /eqP SCHED /eqP SCHED'.
by specialize (SEQ j_other t cpu cpu' SCHED SCHED'); rewrite SEQ in Heq.
}
{
apply negbT in EX; rewrite negb_exists in EX.
move: EX ⇒ /forallP EX.
rewrite (eq_bigr (fun x ⇒ 0)); first by simpl_sum_const.
by intros cpu _; specialize (EX cpu); apply negbTE in EX; rewrite EX andbF.
}
Qed.
End InterferenceSequentialJobs.
(* Next, we show that the cumulative per-task interference bounds the total
interference. *)
Section BoundUsingPerJobInterference.
Lemma interference_le_interference_joblist :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ task_interference_joblist tsk t1 t2.
Proof.
intros tsk t1 t2.
unfold task_interference, task_interference_joblist, job_interference, job_is_backlogged.
rewrite [\sum_(_ <- _ sched _ _ | _) _]exchange_big /=.
rewrite big_nat_cond [\sum_(_ ≤ _ < _ | true) _]big_nat_cond.
apply leq_sum; move ⇒ t /andP [LEt _].
rewrite exchange_big /=.
apply leq_sum; intros cpu _.
destruct (backlogged job_arrival job_cost job_jitter sched j t) eqn:BACK;
last by rewrite andFb (eq_bigr (fun x ⇒ 0));
first by rewrite big_const_seq iter_addn mul0n addn0.
rewrite andTb.
destruct (task_scheduled_on job_task sched tsk cpu t) eqn:SCHED; last by done.
unfold scheduled_on, task_scheduled_on in ×.
destruct (sched cpu t) as [j' |] eqn:SOME; last by done.
rewrite big_mkcond /= (bigD1_seq j') /=; last by apply undup_uniq.
{
by rewrite SCHED eq_refl.
}
{
unfold jobs_scheduled_between.
rewrite mem_undup; apply mem_bigcat_nat with (j := t);
first by done.
apply mem_bigcat_ord with (j := cpu); first by apply ltn_ord.
by unfold make_sequence; rewrite SOME mem_seq1 eq_refl.
}
Qed.
End BoundUsingPerJobInterference.
End InterferenceDefs.
End Interference.