Library rt.model.schedule.uni.transformation.construction
Require Import rt.util.all.
Require Import rt.model.arrival.basic.job rt.model.arrival.basic.arrival_sequence.
Require Import rt.model.schedule.uni.schedule.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype bigop seq path finfun.
Module ScheduleConstruction.
Import Job ArrivalSequence UniprocessorSchedule.
(* In this section, we construct a schedule recursively by augmenting prefixes. *)
Section ConstructionFromPrefixes.
Context {Job: eqType}.
(* Let arr_seq be any arrival sequence.*)
Variable arr_seq: arrival_sequence Job.
(* Assume we are given a function that takes an existing schedule prefix
up to interval [0, t) and returns what should be scheduled at time t. *)
Variable build_schedule:
schedule Job → time → option Job.
(* Then, starting from a base schedule, ... *)
Variable base_sched: schedule Job.
(* ...we can update individual times using the build_schedule function, ... *)
Definition update_schedule (prev_sched: schedule Job)
(t_next: time) : schedule Job :=
fun t ⇒
if t == t_next then
build_schedule prev_sched t
else prev_sched t.
(* ...which recursively generates schedule prefixes up to time t_max. *)
Fixpoint schedule_prefix (t_max: time) : schedule Job :=
if t_max is t_prev.+1 then
update_schedule (schedule_prefix t_prev) t_prev.+1
else
update_schedule base_sched 0.
(* Based on the schedule prefixes, we construct a complete schedule. *)
Definition build_schedule_from_prefixes := fun t ⇒ schedule_prefix t t.
(* In this section, we prove some lemmas about the construction. *)
Section Lemmas.
(* Let sched be the generated schedule. *)
Let sched := build_schedule_from_prefixes.
(* First, we show that the scheduler preserves its prefixes. *)
Lemma prefix_construction_same_prefix:
∀ t t_max,
t ≤ t_max →
schedule_prefix t_max t = sched t.
Proof.
intros t t_max LEt.
induction t_max;
first by rewrite leqn0 in LEt; move: LEt ⇒ /eqP EQ; subst.
rewrite leq_eqVlt in LEt.
move: LEt ⇒ /orP [/eqP EQ | LESS]; first by subst.
{
feed IHt_max; first by done.
unfold schedule_prefix, update_schedule at 1.
assert (FALSE: t == t_max.+1 = false).
{
by apply negbTE; rewrite neq_ltn LESS orTb.
} rewrite FALSE.
by rewrite -IHt_max.
}
Qed.
Section ServiceDependent.
(* If the generation function only depends on the service
received by jobs during the schedule prefix, ...*)
Hypothesis H_depends_only_on_service:
∀ sched1 sched2 t,
(∀ j, service sched1 j t = service sched2 j t) →
build_schedule sched1 t = build_schedule sched2 t.
(* ...then we can prove that the final schedule, at any time t,
is exactly the result of the construction function. *)
Lemma service_dependent_schedule_construction:
∀ t,
sched t = build_schedule sched t.
Proof.
intros t.
feed (prefix_construction_same_prefix t t); [by done | intros EQ].
rewrite -{}EQ.
induction t as [t IH] using strong_ind.
destruct t.
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_service.
by intros j; rewrite /service /service_during big_geq // big_geq //.
}
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_service.
intros j; rewrite /service /service_during.
rewrite big_nat_recr //= big_nat_recr //=; f_equal.
apply eq_big_nat; move ⇒ i /= LT.
rewrite /service_at /scheduled_at.
by rewrite prefix_construction_same_prefix; last by apply ltnW.
}
Qed.
End ServiceDependent.
Section PrefixDependent.
(* If the generation function only depends on the schedule prefix, ... *)
Hypothesis H_depends_only_on_prefix:
∀ (sched1 sched2: schedule Job) t,
(∀ t0, t0 < t → sched1 t0 = sched2 t0) →
build_schedule sched1 t = build_schedule sched2 t.
(* ...then we can prove that the final schedule, at any time t,
is exactly the result of the construction function. *)
Lemma prefix_dependent_schedule_construction:
∀ t, sched t = build_schedule sched t.
Proof.
intros t.
feed (prefix_construction_same_prefix t t); [by done | intros EQ].
rewrite -{}EQ.
induction t using strong_ind.
destruct t.
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_prefix.
by intros t; rewrite ltn0.
}
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_prefix.
intros t0 LT.
by rewrite prefix_construction_same_prefix.
}
Qed.
End PrefixDependent.
Section ImmediateProperty.
Variable P: option Job → Prop.
Hypothesis H_immediate_property:
∀ sched_prefix t, P (build_schedule sched_prefix t).
Lemma immediate_property_of_schedule_construction:
∀ t, P (sched t).
Proof.
destruct t.
{
rewrite /sched /build_schedule_from_prefixes /schedule_prefix /update_schedule eq_refl.
by apply H_immediate_property.
}
{
rewrite /sched /build_schedule_from_prefixes /schedule_prefix /update_schedule eq_refl.
by apply H_immediate_property.
}
Qed.
End ImmediateProperty.
End Lemmas.
End ConstructionFromPrefixes.
End ScheduleConstruction.
Require Import rt.model.arrival.basic.job rt.model.arrival.basic.arrival_sequence.
Require Import rt.model.schedule.uni.schedule.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat fintype bigop seq path finfun.
Module ScheduleConstruction.
Import Job ArrivalSequence UniprocessorSchedule.
(* In this section, we construct a schedule recursively by augmenting prefixes. *)
Section ConstructionFromPrefixes.
Context {Job: eqType}.
(* Let arr_seq be any arrival sequence.*)
Variable arr_seq: arrival_sequence Job.
(* Assume we are given a function that takes an existing schedule prefix
up to interval [0, t) and returns what should be scheduled at time t. *)
Variable build_schedule:
schedule Job → time → option Job.
(* Then, starting from a base schedule, ... *)
Variable base_sched: schedule Job.
(* ...we can update individual times using the build_schedule function, ... *)
Definition update_schedule (prev_sched: schedule Job)
(t_next: time) : schedule Job :=
fun t ⇒
if t == t_next then
build_schedule prev_sched t
else prev_sched t.
(* ...which recursively generates schedule prefixes up to time t_max. *)
Fixpoint schedule_prefix (t_max: time) : schedule Job :=
if t_max is t_prev.+1 then
update_schedule (schedule_prefix t_prev) t_prev.+1
else
update_schedule base_sched 0.
(* Based on the schedule prefixes, we construct a complete schedule. *)
Definition build_schedule_from_prefixes := fun t ⇒ schedule_prefix t t.
(* In this section, we prove some lemmas about the construction. *)
Section Lemmas.
(* Let sched be the generated schedule. *)
Let sched := build_schedule_from_prefixes.
(* First, we show that the scheduler preserves its prefixes. *)
Lemma prefix_construction_same_prefix:
∀ t t_max,
t ≤ t_max →
schedule_prefix t_max t = sched t.
Proof.
intros t t_max LEt.
induction t_max;
first by rewrite leqn0 in LEt; move: LEt ⇒ /eqP EQ; subst.
rewrite leq_eqVlt in LEt.
move: LEt ⇒ /orP [/eqP EQ | LESS]; first by subst.
{
feed IHt_max; first by done.
unfold schedule_prefix, update_schedule at 1.
assert (FALSE: t == t_max.+1 = false).
{
by apply negbTE; rewrite neq_ltn LESS orTb.
} rewrite FALSE.
by rewrite -IHt_max.
}
Qed.
Section ServiceDependent.
(* If the generation function only depends on the service
received by jobs during the schedule prefix, ...*)
Hypothesis H_depends_only_on_service:
∀ sched1 sched2 t,
(∀ j, service sched1 j t = service sched2 j t) →
build_schedule sched1 t = build_schedule sched2 t.
(* ...then we can prove that the final schedule, at any time t,
is exactly the result of the construction function. *)
Lemma service_dependent_schedule_construction:
∀ t,
sched t = build_schedule sched t.
Proof.
intros t.
feed (prefix_construction_same_prefix t t); [by done | intros EQ].
rewrite -{}EQ.
induction t as [t IH] using strong_ind.
destruct t.
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_service.
by intros j; rewrite /service /service_during big_geq // big_geq //.
}
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_service.
intros j; rewrite /service /service_during.
rewrite big_nat_recr //= big_nat_recr //=; f_equal.
apply eq_big_nat; move ⇒ i /= LT.
rewrite /service_at /scheduled_at.
by rewrite prefix_construction_same_prefix; last by apply ltnW.
}
Qed.
End ServiceDependent.
Section PrefixDependent.
(* If the generation function only depends on the schedule prefix, ... *)
Hypothesis H_depends_only_on_prefix:
∀ (sched1 sched2: schedule Job) t,
(∀ t0, t0 < t → sched1 t0 = sched2 t0) →
build_schedule sched1 t = build_schedule sched2 t.
(* ...then we can prove that the final schedule, at any time t,
is exactly the result of the construction function. *)
Lemma prefix_dependent_schedule_construction:
∀ t, sched t = build_schedule sched t.
Proof.
intros t.
feed (prefix_construction_same_prefix t t); [by done | intros EQ].
rewrite -{}EQ.
induction t using strong_ind.
destruct t.
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_prefix.
by intros t; rewrite ltn0.
}
{
rewrite /= /update_schedule eq_refl.
apply H_depends_only_on_prefix.
intros t0 LT.
by rewrite prefix_construction_same_prefix.
}
Qed.
End PrefixDependent.
Section ImmediateProperty.
Variable P: option Job → Prop.
Hypothesis H_immediate_property:
∀ sched_prefix t, P (build_schedule sched_prefix t).
Lemma immediate_property_of_schedule_construction:
∀ t, P (sched t).
Proof.
destruct t.
{
rewrite /sched /build_schedule_from_prefixes /schedule_prefix /update_schedule eq_refl.
by apply H_immediate_property.
}
{
rewrite /sched /build_schedule_from_prefixes /schedule_prefix /update_schedule eq_refl.
by apply H_immediate_property.
}
Qed.
End ImmediateProperty.
End Lemmas.
End ConstructionFromPrefixes.
End ScheduleConstruction.