Library rt.util.find_seq
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq bigop div.
Require Import rt.util.all.
Section find_seq.
Context {T:eqType}.
Variable P: T→ bool.
Fixpoint findP l:=
match l with
| nil ⇒ None
| x::s ⇒ if P x then Some x else findP s
end.
Lemma findP_FIFO:
∀ (l:seq T) x y,
P y = true → y \in l → x ≠ y →
findP l = Some x →
find (fun j ⇒ j==x) l < find (fun j ⇒ j==y) l.
Proof.
intros× PY YIN NEQ FIND.
induction l.
- auto.
- case (a==x)eqn:AX;case (a==y)eqn:AY;simpl; rewrite AX AY;auto.
+ move/eqP in AX;move/eqP in AY;rewrite AX in AY;auto.
+ simpl in FIND;move/eqP in AY;rewrite AY PY in FIND;clarify;
by move/eqP in AX.
+ rewrite in_cons in YIN. move:YIN⇒ /orP [/eqP EQ | YIN]. move/eqP in AY;auto.
simpl in FIND. case (P a) eqn:PA;clarify. move/eqP in AX;auto. apply IHl;auto.
Qed.
Lemma find_uniql:
∀ (x:T) l1 l2,
uniq(l1 ++ l2) →
x \in l2 →
¬ x \in l1.
Proof.
intros. intro XIN.
induction l1. auto.
case (a==x)eqn:AX;move/eqP in AX;simpl in H;
move:H=>/andP [NIN U];move/negP in NIN;auto.
rewrite AX in NIN. have XIN12: x \in (l1++l2).
rewrite mem_cat. apply/orP. by right.
apply IHl1;auto. rewrite in_cons in XIN.
move:XIN=>/orP [/eqP EQ | XL1];auto.
Qed.
Lemma find_uniq:
∀ (x:T) l1 l2,
uniq(l1 ++ l2) →
x \in l2 →
has (fun x': T⇒ x'==x) l1 = false.
Proof.
intros.
apply /negP /negP /hasPn.
intros. apply find_uniql with (x:=x) in H;auto.
case (x0==x)eqn:XX;move/eqP in XX;last trivial.
rewrite -XX in H0. by subst.
Qed.
Lemma findP_in_seq:
∀ (l:seq T) x,
findP l = Some x →
P x ∧ x \in l.
Proof.
intros× FIND.
split.
- generalize dependent x. induction l.
+ by rewrite /=.
+ simpl. case (P a) eqn:CASE. intros x SOME.
case : SOME ⇒ AX. subst. auto.
assumption.
- generalize dependent x. induction l.
+ by rewrite /=.
+ simpl. case (P a) eqn:CASE. intros x SOME.
case : SOME ⇒ AX. subst. rewrite in_cons.
apply/orP. left. trivial.
intros x FIND. rewrite in_cons. apply/orP. right. auto.
Qed.
Lemma findP_notSome_in_seq:
∀ (l:seq T) x,
findP l != Some x →
x \in l→
¬ P x ∨ ∃ y, findP l = Some y.
Proof.
intros× NFIND IN.
generalize dependent x. induction l;intros x G IN.
- auto.
- simpl in G. case (P a) eqn:CASE.
+ right;∃ a;simpl;by rewrite CASE.
+ case (a==x) eqn:AX.
× left. move/eqP in AX. by rewrite -AX CASE.
× apply IHl in G. destruct G as [NP|EXIST].
-- by left.
-- right. simpl. by rewrite CASE.
rewrite in_cons in IN. move/orP in IN.
destruct IN as [XA | XINL].
++ move/eqP in XA. move/eqP in AX. auto.
++ trivial.
Qed.
End find_seq.
Require Import rt.util.all.
Section find_seq.
Context {T:eqType}.
Variable P: T→ bool.
Fixpoint findP l:=
match l with
| nil ⇒ None
| x::s ⇒ if P x then Some x else findP s
end.
Lemma findP_FIFO:
∀ (l:seq T) x y,
P y = true → y \in l → x ≠ y →
findP l = Some x →
find (fun j ⇒ j==x) l < find (fun j ⇒ j==y) l.
Proof.
intros× PY YIN NEQ FIND.
induction l.
- auto.
- case (a==x)eqn:AX;case (a==y)eqn:AY;simpl; rewrite AX AY;auto.
+ move/eqP in AX;move/eqP in AY;rewrite AX in AY;auto.
+ simpl in FIND;move/eqP in AY;rewrite AY PY in FIND;clarify;
by move/eqP in AX.
+ rewrite in_cons in YIN. move:YIN⇒ /orP [/eqP EQ | YIN]. move/eqP in AY;auto.
simpl in FIND. case (P a) eqn:PA;clarify. move/eqP in AX;auto. apply IHl;auto.
Qed.
Lemma find_uniql:
∀ (x:T) l1 l2,
uniq(l1 ++ l2) →
x \in l2 →
¬ x \in l1.
Proof.
intros. intro XIN.
induction l1. auto.
case (a==x)eqn:AX;move/eqP in AX;simpl in H;
move:H=>/andP [NIN U];move/negP in NIN;auto.
rewrite AX in NIN. have XIN12: x \in (l1++l2).
rewrite mem_cat. apply/orP. by right.
apply IHl1;auto. rewrite in_cons in XIN.
move:XIN=>/orP [/eqP EQ | XL1];auto.
Qed.
Lemma find_uniq:
∀ (x:T) l1 l2,
uniq(l1 ++ l2) →
x \in l2 →
has (fun x': T⇒ x'==x) l1 = false.
Proof.
intros.
apply /negP /negP /hasPn.
intros. apply find_uniql with (x:=x) in H;auto.
case (x0==x)eqn:XX;move/eqP in XX;last trivial.
rewrite -XX in H0. by subst.
Qed.
Lemma findP_in_seq:
∀ (l:seq T) x,
findP l = Some x →
P x ∧ x \in l.
Proof.
intros× FIND.
split.
- generalize dependent x. induction l.
+ by rewrite /=.
+ simpl. case (P a) eqn:CASE. intros x SOME.
case : SOME ⇒ AX. subst. auto.
assumption.
- generalize dependent x. induction l.
+ by rewrite /=.
+ simpl. case (P a) eqn:CASE. intros x SOME.
case : SOME ⇒ AX. subst. rewrite in_cons.
apply/orP. left. trivial.
intros x FIND. rewrite in_cons. apply/orP. right. auto.
Qed.
Lemma findP_notSome_in_seq:
∀ (l:seq T) x,
findP l != Some x →
x \in l→
¬ P x ∨ ∃ y, findP l = Some y.
Proof.
intros× NFIND IN.
generalize dependent x. induction l;intros x G IN.
- auto.
- simpl in G. case (P a) eqn:CASE.
+ right;∃ a;simpl;by rewrite CASE.
+ case (a==x) eqn:AX.
× left. move/eqP in AX. by rewrite -AX CASE.
× apply IHl in G. destruct G as [NP|EXIST].
-- by left.
-- right. simpl. by rewrite CASE.
rewrite in_cons in IN. move/orP in IN.
destruct IN as [XA | XINL].
++ move/eqP in XA. move/eqP in AX. auto.
++ trivial.
Qed.
End find_seq.