Library rt.util.fixedpoint
Require Import rt.util.tactics rt.util.induction.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
Section FixedPoint.
Lemma iter_fix T (F : T → T) x k n :
iter k F x = iter k.+1 F x →
k ≤ n →
iter n F x = iter n.+1 F x.
Proof.
move ⇒ e. elim: n. rewrite leqn0. by move/eqP<-.
move ⇒ n IH. rewrite leq_eqVlt; case/orP; first by move/eqP<-.
move/IH ⇒ /= IHe. by rewrite -!IHe.
Qed.
Lemma fun_mon_iter_mon :
∀ (f: nat → nat) x0 x1 x2,
x1 ≤ x2 →
f x0 ≥ x0 →
(∀ x1 x2, x1 ≤ x2 → f x1 ≤ f x2) →
iter x1 f x0 ≤ iter x2 f x0.
Proof.
intros f x0 x1 x2 LE MIN MON.
revert LE; revert x2; rewrite leq_as_delta; intros delta.
induction x1; try rewrite add0n.
{
induction delta; first by apply leqnn.
apply leq_trans with (n := iter delta f x0); first by done.
clear IHdelta.
induction delta; first by done.
{
rewrite 2!iterS; apply MON.
apply IHdelta.
}
}
{
rewrite iterS -addn1 -addnA [1 + delta]addnC addnA addn1 iterS.
by apply MON, IHx1.
}
Qed.
Lemma fun_mon_iter_mon_helper :
∀ T (f: T → T) (le: rel T) x0 x1,
reflexive le →
transitive le →
(∀ x2, le x0 (iter x2 f x0)) →
(∀ x1 x2, le x0 x1 → le x1 x2 → le (f x1) (f x2)) →
le (iter x1 f x0) (iter x1.+1 f x0).
Proof.
intros T f le x0 x1 REFL TRANS MIN MON.
generalize dependent x0.
induction x1; first by ins; apply (MIN 1).
by ins; apply MON; [by apply MIN | by apply IHx1].
Qed.
Lemma fun_mon_iter_mon_generic :
∀ T (f: T → T) (le: rel T) x0 x1 x2,
reflexive le →
transitive le →
x1 ≤ x2 →
(∀ x1 x2, le x0 x1 → le x1 x2 → le (f x1) (f x2)) →
(∀ x2 : nat, le x0 (iter x2 f x0)) →
le (iter x1 f x0) (iter x2 f x0).
Proof.
intros T f le x0 x1 x2 REFL TRANS LE MON MIN.
revert LE; revert x2; rewrite leq_as_delta; intros delta.
induction delta; first by rewrite addn0; apply REFL.
apply (TRANS) with (y := iter (x1 + delta) f x0);
first by apply IHdelta.
by rewrite addnS; apply fun_mon_iter_mon_helper.
Qed.
End FixedPoint.
(* In this section, we define some properties of relations
that are important for fixed-point iterations. *)
Section Relations.
Context {T: Type}.
Variable R: rel T.
Variable f: T → T.
Definition monotone (R: rel T) :=
∀ x y, R x y → R (f x) (f y).
End Relations.
(* In this section we define a fixed-point iteration function
that stops as soon as it finds the solution. If no solution
is found, the function returns None. *)
Section Iteration.
Context {T : eqType}.
Variable f: T → T.
Fixpoint iter_fixpoint max_steps (x: T) :=
if max_steps is step.+1 then
let x' := f x in
if x == x' then
Some x
else iter_fixpoint step x'
else None.
Section BasicLemmas.
(* We prove that iter_fixpoint either returns either None
or Some y, where y is a fixed point. *)
Lemma iter_fixpoint_cases :
∀ max_steps x0,
iter_fixpoint max_steps x0 = None ∨
∃ y,
iter_fixpoint max_steps x0 = Some y ∧
y = f y.
Proof.
induction max_steps.
{
by ins; simpl; destruct (x0 == f x0); left.
}
{
intros x0; simpl.
destruct (x0 == f x0) eqn:EQ1;
first by right; ∃ x0; split; last by apply/eqP.
by destruct (IHmax_steps (f x0)) as [NONE | FOUND].
}
Qed.
(* We also show that any inductive property P is propagated
through the fixed-point iteration. *)
Lemma iter_fixpoint_ind:
∀ max_steps x0 x,
iter_fixpoint max_steps x0 = Some x →
∀ P,
P x0 →
(∀ x, P x → P (f x)) →
P x.
Proof.
induction max_steps; first by done.
intros x0 x SOME P P0 ALL.
move: SOME; simpl.
case EQ: (_ == _).
{
move: EQ ⇒ /eqP EQ.
case ⇒ SAME; subst.
by rewrite EQ; apply ALL.
}
{
intros SOME; clear EQ.
apply (IHmax_steps (f x0) x SOME P); first by apply ALL.
by apply ALL.
}
Qed.
End BasicLemmas.
Section RelationLemmas.
Variable R: rel T.
Hypothesis H_reflexive: reflexive R.
Hypothesis H_transitive: transitive R.
Hypothesis H_monotone: monotone f R.
Lemma iter_fixpoint_ge_min:
∀ max_steps x0 x1 x,
iter_fixpoint max_steps x1 = Some x →
R x0 x1 →
R x1 (f x1) →
R x0 x.
Proof.
induction max_steps; first by done.
{
intros x0 x1 x SOME MIN BOT; simpl in SOME.
destruct (x1 == f x1) eqn:EQ1;
first by inversion SOME; subst.
apply IHmax_steps with (x0 := x0) in SOME; first by done.
- by apply (@H_transitive x1).
- by apply H_monotone.
}
Qed.
Lemma iter_fixpoint_ge_bottom:
∀ max_steps x0 x,
iter_fixpoint max_steps x0 = Some x →
R x0 (f x0) →
R x0 x.
Proof.
intros max_steps x0 x SOME BOT.
by apply iter_fixpoint_ge_min with (max_steps := max_steps) (x1 := x0).
Qed.
End RelationLemmas.
End Iteration.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
Section FixedPoint.
Lemma iter_fix T (F : T → T) x k n :
iter k F x = iter k.+1 F x →
k ≤ n →
iter n F x = iter n.+1 F x.
Proof.
move ⇒ e. elim: n. rewrite leqn0. by move/eqP<-.
move ⇒ n IH. rewrite leq_eqVlt; case/orP; first by move/eqP<-.
move/IH ⇒ /= IHe. by rewrite -!IHe.
Qed.
Lemma fun_mon_iter_mon :
∀ (f: nat → nat) x0 x1 x2,
x1 ≤ x2 →
f x0 ≥ x0 →
(∀ x1 x2, x1 ≤ x2 → f x1 ≤ f x2) →
iter x1 f x0 ≤ iter x2 f x0.
Proof.
intros f x0 x1 x2 LE MIN MON.
revert LE; revert x2; rewrite leq_as_delta; intros delta.
induction x1; try rewrite add0n.
{
induction delta; first by apply leqnn.
apply leq_trans with (n := iter delta f x0); first by done.
clear IHdelta.
induction delta; first by done.
{
rewrite 2!iterS; apply MON.
apply IHdelta.
}
}
{
rewrite iterS -addn1 -addnA [1 + delta]addnC addnA addn1 iterS.
by apply MON, IHx1.
}
Qed.
Lemma fun_mon_iter_mon_helper :
∀ T (f: T → T) (le: rel T) x0 x1,
reflexive le →
transitive le →
(∀ x2, le x0 (iter x2 f x0)) →
(∀ x1 x2, le x0 x1 → le x1 x2 → le (f x1) (f x2)) →
le (iter x1 f x0) (iter x1.+1 f x0).
Proof.
intros T f le x0 x1 REFL TRANS MIN MON.
generalize dependent x0.
induction x1; first by ins; apply (MIN 1).
by ins; apply MON; [by apply MIN | by apply IHx1].
Qed.
Lemma fun_mon_iter_mon_generic :
∀ T (f: T → T) (le: rel T) x0 x1 x2,
reflexive le →
transitive le →
x1 ≤ x2 →
(∀ x1 x2, le x0 x1 → le x1 x2 → le (f x1) (f x2)) →
(∀ x2 : nat, le x0 (iter x2 f x0)) →
le (iter x1 f x0) (iter x2 f x0).
Proof.
intros T f le x0 x1 x2 REFL TRANS LE MON MIN.
revert LE; revert x2; rewrite leq_as_delta; intros delta.
induction delta; first by rewrite addn0; apply REFL.
apply (TRANS) with (y := iter (x1 + delta) f x0);
first by apply IHdelta.
by rewrite addnS; apply fun_mon_iter_mon_helper.
Qed.
End FixedPoint.
(* In this section, we define some properties of relations
that are important for fixed-point iterations. *)
Section Relations.
Context {T: Type}.
Variable R: rel T.
Variable f: T → T.
Definition monotone (R: rel T) :=
∀ x y, R x y → R (f x) (f y).
End Relations.
(* In this section we define a fixed-point iteration function
that stops as soon as it finds the solution. If no solution
is found, the function returns None. *)
Section Iteration.
Context {T : eqType}.
Variable f: T → T.
Fixpoint iter_fixpoint max_steps (x: T) :=
if max_steps is step.+1 then
let x' := f x in
if x == x' then
Some x
else iter_fixpoint step x'
else None.
Section BasicLemmas.
(* We prove that iter_fixpoint either returns either None
or Some y, where y is a fixed point. *)
Lemma iter_fixpoint_cases :
∀ max_steps x0,
iter_fixpoint max_steps x0 = None ∨
∃ y,
iter_fixpoint max_steps x0 = Some y ∧
y = f y.
Proof.
induction max_steps.
{
by ins; simpl; destruct (x0 == f x0); left.
}
{
intros x0; simpl.
destruct (x0 == f x0) eqn:EQ1;
first by right; ∃ x0; split; last by apply/eqP.
by destruct (IHmax_steps (f x0)) as [NONE | FOUND].
}
Qed.
(* We also show that any inductive property P is propagated
through the fixed-point iteration. *)
Lemma iter_fixpoint_ind:
∀ max_steps x0 x,
iter_fixpoint max_steps x0 = Some x →
∀ P,
P x0 →
(∀ x, P x → P (f x)) →
P x.
Proof.
induction max_steps; first by done.
intros x0 x SOME P P0 ALL.
move: SOME; simpl.
case EQ: (_ == _).
{
move: EQ ⇒ /eqP EQ.
case ⇒ SAME; subst.
by rewrite EQ; apply ALL.
}
{
intros SOME; clear EQ.
apply (IHmax_steps (f x0) x SOME P); first by apply ALL.
by apply ALL.
}
Qed.
End BasicLemmas.
Section RelationLemmas.
Variable R: rel T.
Hypothesis H_reflexive: reflexive R.
Hypothesis H_transitive: transitive R.
Hypothesis H_monotone: monotone f R.
Lemma iter_fixpoint_ge_min:
∀ max_steps x0 x1 x,
iter_fixpoint max_steps x1 = Some x →
R x0 x1 →
R x1 (f x1) →
R x0 x.
Proof.
induction max_steps; first by done.
{
intros x0 x1 x SOME MIN BOT; simpl in SOME.
destruct (x1 == f x1) eqn:EQ1;
first by inversion SOME; subst.
apply IHmax_steps with (x0 := x0) in SOME; first by done.
- by apply (@H_transitive x1).
- by apply H_monotone.
}
Qed.
Lemma iter_fixpoint_ge_bottom:
∀ max_steps x0 x,
iter_fixpoint max_steps x0 = Some x →
R x0 (f x0) →
R x0 x.
Proof.
intros max_steps x0 x SOME BOT.
by apply iter_fixpoint_ge_min with (max_steps := max_steps) (x1 := x0).
Qed.
End RelationLemmas.
End Iteration.