Library prosa.analysis.facts.preemption.task.nonpreemptive
Furthermore, we assume the fully non-preemptive task model.
Require Import prosa.model.preemption.fully_nonpreemptive.
Require Import prosa.model.task.preemption.fully_nonpreemptive.
Require Import prosa.model.task.preemption.fully_nonpreemptive.
Platform for Fully Non-Preemptive Model
In this section, we prove that instantiation of functions job_preemptable and task_max_nonpreemptive_segment to the fully non-preemptive model indeed defines a valid preemption model with bounded non-preemptive regions.
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Consider any arrival sequence with consistent arrivals.
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Next, consider any ideal non-preemptive uni-processor schedule of this arrival sequence...
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_nonpreemptive_sched : nonpreemptive_schedule sched.
Hypothesis H_nonpreemptive_sched : nonpreemptive_schedule sched.
... where jobs do not execute before their arrival or after completion.
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.
Hypothesis H_completed_jobs_dont_execute : completed_jobs_dont_execute sched.
Assume that a job cost cannot be larger than a task cost.
Then we prove that fully_nonpreemptive_model function
defines a model with bounded non-preemptive regions.
Lemma fully_nonpreemptive_model_is_model_with_bounded_nonpreemptive_regions:
model_with_bounded_nonpreemptive_segments arr_seq.
model_with_bounded_nonpreemptive_segments arr_seq.
Which together with lemma valid_fully_nonpreemptive_model
gives us the fact that fully_nonpreemptive_model defined a valid
preemption model with bounded non-preemptive regions.
Corollary fully_nonpreemptive_model_is_valid_model_with_bounded_nonpreemptive_regions:
valid_model_with_bounded_nonpreemptive_segments arr_seq sched.
End FullyNonPreemptiveModel.
valid_model_with_bounded_nonpreemptive_segments arr_seq sched.
End FullyNonPreemptiveModel.
We add the above lemma into a "Hint Database" basic_facts, so Coq will be able to apply them automatically.
Hint Resolve
valid_fully_nonpreemptive_model
fully_nonpreemptive_model_is_model_with_bounded_nonpreemptive_regions
fully_nonpreemptive_model_is_valid_model_with_bounded_nonpreemptive_regions : basic_facts.
valid_fully_nonpreemptive_model
fully_nonpreemptive_model_is_model_with_bounded_nonpreemptive_regions
fully_nonpreemptive_model_is_valid_model_with_bounded_nonpreemptive_regions : basic_facts.