Library prosa.util.bigcat
Require Export prosa.util.tactics prosa.util.notation.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Lemmas about the big concatenation operator. *)
Section BigCatLemmas.
Lemma mem_bigcat_nat:
∀ (T: eqType) x m n j (f: _ → list T),
m ≤ j < n →
x \in (f j) →
x \in \cat_(m ≤ i < n) (f i).
Lemma mem_bigcat_nat_exists :
∀ (T: eqType) x m n (f: nat → list T),
x \in \cat_(m ≤ i < n) (f i) →
∃ i, x \in (f i) ∧
m ≤ i < n.
Lemma bigcat_nat_uniq :
∀ (T: eqType) n1 n2 (F: nat → list T),
(∀ i, uniq (F i)) →
(∀ x i1 i2,
x \in (F i1) → x \in (F i2) → i1 = i2) →
uniq (\cat_(n1 ≤ i < n2) (F i)).
End BigCatLemmas.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Lemmas about the big concatenation operator. *)
Section BigCatLemmas.
Lemma mem_bigcat_nat:
∀ (T: eqType) x m n j (f: _ → list T),
m ≤ j < n →
x \in (f j) →
x \in \cat_(m ≤ i < n) (f i).
Lemma mem_bigcat_nat_exists :
∀ (T: eqType) x m n (f: nat → list T),
x \in \cat_(m ≤ i < n) (f i) →
∃ i, x \in (f i) ∧
m ≤ i < n.
Lemma bigcat_nat_uniq :
∀ (T: eqType) n1 n2 (F: nat → list T),
(∀ i, uniq (F i)) →
(∀ x i1 i2,
x \in (F i1) → x \in (F i2) → i1 = i2) →
uniq (\cat_(n1 ≤ i < n2) (F i)).
End BigCatLemmas.