Library prosa.analysis.facts.model.rbf
Require Export prosa.analysis.facts.model.workload.
Require Export prosa.analysis.definitions.job_properties.
Require Export prosa.analysis.definitions.request_bound_function.
Require Export prosa.analysis.definitions.job_properties.
Require Export prosa.analysis.definitions.request_bound_function.
Facts about Request Bound Functions (RBFs)
RBF is a Bound on Workload
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Consider any arrival sequence with consistent, non-duplicate arrivals...
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
Hypothesis H_arrival_times_are_consistent : consistent_arrival_times arr_seq.
Hypothesis H_arr_seq_is_a_set : arrival_sequence_uniq arr_seq.
... and any ideal uni-processor schedule of this arrival sequence.
Variable sched : schedule (ideal.processor_state Job).
Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq.
Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq.
Consider an FP policy that indicates a higher-or-equal priority relation.
Consider a task set ts...
...and let tsk be any task in ts.
Assume that the job costs are no larger than the task costs.
Next, we assume that all jobs come from the task set.
Let max_arrivals be any arrival bound for task-set ts.
Context `{MaxArrivals Task}.
Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts.
Hypothesis H_is_arrival_bound : taskset_respects_max_arrivals arr_seq ts.
Let's define some local names for clarity.
Let task_rbf := task_request_bound_function tsk.
Let total_rbf := total_request_bound_function ts.
Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk.
Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk.
Let total_rbf := total_request_bound_function ts.
Let total_hep_rbf := total_hep_request_bound_function_FP ts tsk.
Let total_ohep_rbf := total_ohep_request_bound_function_FP ts tsk.
Variable j : Job.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_of_tsk : job_task j = tsk.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_of_tsk : job_task j = tsk.
Next, we say that two jobs j1 and j2 are in relation
other_higher_eq_priority, iff j1 has higher or equal priority than j2 and
is produced by a different task.
Next, we recall the notions of total workload of jobs...
...notions of workload of higher or equal priority jobs...
Let total_hep_workload t1 t2 :=
workload_of_jobs (fun j_other ⇒ jlfp_higher_eq_priority j_other j) (arrivals_between arr_seq t1 t2).
workload_of_jobs (fun j_other ⇒ jlfp_higher_eq_priority j_other j) (arrivals_between arr_seq t1 t2).
... workload of other higher or equal priority jobs...
Let total_ohep_workload t1 t2 :=
workload_of_jobs (fun j_other ⇒ other_higher_eq_priority j_other j) (arrivals_between arr_seq t1 t2).
workload_of_jobs (fun j_other ⇒ other_higher_eq_priority j_other j) (arrivals_between arr_seq t1 t2).
... and the workload of jobs of the same task as job j.
In this section we prove that the workload of any jobs is
no larger than the request bound function.
Consider any time t and any interval of length delta.
First, we show that workload of task tsk is bounded by the number of
arrivals of the task times the cost of the task.
Lemma task_workload_le_num_of_arrivals_times_cost:
task_workload t (t + delta)
≤ task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta).
Proof.
rewrite // /number_of_task_arrivals -sum1_size big_distrr /= big_filter.
rewrite /task_workload_between /workload.task_workload_between /task_workload /workload_of_jobs.
rewrite /same_task -H_job_of_tsk muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ; apply in_arrivals_implies_arrived in IN0; auto.
by apply H_valid_job_cost.
Qed.
task_workload t (t + delta)
≤ task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta).
Proof.
rewrite // /number_of_task_arrivals -sum1_size big_distrr /= big_filter.
rewrite /task_workload_between /workload.task_workload_between /task_workload /workload_of_jobs.
rewrite /same_task -H_job_of_tsk muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ; apply in_arrivals_implies_arrived in IN0; auto.
by apply H_valid_job_cost.
Qed.
As a corollary, we prove that workload of task is no larger the than
task request bound function.
Corollary task_workload_le_task_rbf:
task_workload t (t + delta) ≤ task_rbf delta.
Proof.
apply leq_trans with
(task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta));
first by apply task_workload_le_num_of_arrivals_times_cost.
rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
Qed.
task_workload t (t + delta) ≤ task_rbf delta.
Proof.
apply leq_trans with
(task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + delta));
first by apply task_workload_le_num_of_arrivals_times_cost.
rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
Qed.
Next, we prove that total workload of other tasks with higher-or-equal
priority is no larger than the total request bound function.
Lemma total_workload_le_total_rbf:
total_ohep_workload t (t + delta) ≤ total_ohep_rbf delta.
Proof.
set l := arrivals_between arr_seq t (t + delta).
apply leq_trans with
(\sum_(tsk' <- ts | hep_task tsk' tsk && (tsk' != tsk))
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ intros.
rewrite /total_ohep_workload /workload_of_jobs /other_higher_eq_priority.
rewrite /jlfp_higher_eq_priority /FP_to_JLFP /same_task H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep_task (job_task x) tsk && (job_task x != tsk)).
rewrite EXCHANGE /=; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite /workload_of_jobs.
rewrite muln1 /l /arrivals_between /arrival_sequence.arrivals_between.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
by rewrite -EQ; apply H_valid_job_cost; apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
total_ohep_workload t (t + delta) ≤ total_ohep_rbf delta.
Proof.
set l := arrivals_between arr_seq t (t + delta).
apply leq_trans with
(\sum_(tsk' <- ts | hep_task tsk' tsk && (tsk' != tsk))
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ intros.
rewrite /total_ohep_workload /workload_of_jobs /other_higher_eq_priority.
rewrite /jlfp_higher_eq_priority /FP_to_JLFP /same_task H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep_task (job_task x) tsk && (job_task x != tsk)).
rewrite EXCHANGE /=; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite /workload_of_jobs.
rewrite muln1 /l /arrivals_between /arrival_sequence.arrivals_between.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
by rewrite -EQ; apply H_valid_job_cost; apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
Next, we prove that total workload of tasks with higher-or-equal
priority is no larger than the total request bound function.
Lemma total_workload_le_total_rbf':
total_hep_workload t (t + delta) ≤ total_hep_rbf delta.
Proof.
set l := arrivals_between arr_seq t (t + delta).
apply leq_trans with
(n := \sum_(tsk' <- ts | hep_task tsk' tsk)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_hep_workload /jlfp_higher_eq_priority /FP_to_JLFP H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep_task (job_task x) tsk).
rewrite EXCHANGE /=; clear EXCHANGE; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_valid_job_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
total_hep_workload t (t + delta) ≤ total_hep_rbf delta.
Proof.
set l := arrivals_between arr_seq t (t + delta).
apply leq_trans with
(n := \sum_(tsk' <- ts | hep_task tsk' tsk)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_hep_workload /jlfp_higher_eq_priority /FP_to_JLFP H_job_of_tsk.
have EXCHANGE := exchange_big_dep (fun x ⇒ hep_task (job_task x) tsk).
rewrite EXCHANGE /=; clear EXCHANGE; last by move ⇒ tsk0 j0 HEP /eqP JOB0; rewrite JOB0.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=; first by rewrite HP0 andTb eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_valid_job_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
Next, we prove that total workload of tasks is no larger than the total
request bound function.
Lemma total_workload_le_total_rbf'':
total_workload t (t + delta) ≤ total_rbf delta.
Proof.
set l := arrivals_between arr_seq t (t + delta).
apply leq_trans with
(n := \sum_(tsk' <- ts)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_workload.
have EXCHANGE := exchange_big_dep predT.
rewrite EXCHANGE /=; clear EXCHANGE; last by done.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=.
rewrite eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0;
apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_valid_job_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
End WorkloadIsBoundedByRBF.
End ProofWorkloadBound.
total_workload t (t + delta) ≤ total_rbf delta.
Proof.
set l := arrivals_between arr_seq t (t + delta).
apply leq_trans with
(n := \sum_(tsk' <- ts)
(\sum_(j0 <- l | job_task j0 == tsk') job_cost j0)).
{ rewrite /total_workload.
have EXCHANGE := exchange_big_dep predT.
rewrite EXCHANGE /=; clear EXCHANGE; last by done.
rewrite /workload_of_jobs -/l big_seq_cond [X in _ ≤ X]big_seq_cond.
apply leq_sum; move ⇒ j0 /andP [IN0 HP0].
rewrite big_mkcond (big_rem (job_task j0)) /=.
rewrite eq_refl; apply leq_addr.
by apply in_arrivals_implies_arrived in IN0;
apply H_all_jobs_from_taskset.
}
apply leq_sum_seq; intros tsk0 INtsk0 HP0.
apply leq_trans with
(task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + delta))).
{ rewrite -sum1_size big_distrr /= big_filter.
rewrite -/l /workload_of_jobs.
rewrite muln1.
apply leq_sum_seq; move ⇒ j0 IN0 /eqP EQ.
rewrite -EQ.
apply H_valid_job_cost.
by apply in_arrivals_implies_arrived in IN0.
}
{ rewrite leq_mul2l; apply/orP; right.
rewrite -{2}[delta](addKn t).
by apply H_is_arrival_bound; last rewrite leq_addr.
}
Qed.
End WorkloadIsBoundedByRBF.
End ProofWorkloadBound.
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Consider any arrival sequence.
Variable arr_seq : arrival_sequence Job.
Hypothesis H_arrival_times_are_consistent:
consistent_arrival_times arr_seq.
Hypothesis H_arrival_times_are_consistent:
consistent_arrival_times arr_seq.
Let tsk be any task.
Let max_arrivals be a family of valid arrival curves, i.e., for any task tsk in ts
max_arrival tsk is (1) an arrival bound of tsk, and (2) it is a monotonic function
that equals 0 for the empty interval delta = 0.
Context `{MaxArrivals Task}.
Hypothesis H_valid_arrival_curve : valid_arrival_curve tsk (max_arrivals tsk).
Hypothesis H_is_arrival_curve : respects_max_arrivals arr_seq tsk (max_arrivals tsk).
Hypothesis H_valid_arrival_curve : valid_arrival_curve tsk (max_arrivals tsk).
Hypothesis H_is_arrival_curve : respects_max_arrivals arr_seq tsk (max_arrivals tsk).
Let's define some local names for clarity.
We prove that task_rbf 0 is equal to 0.
Lemma task_rbf_0_zero:
task_rbf 0 = 0.
Proof.
rewrite /task_rbf /task_request_bound_function.
apply/eqP; rewrite muln_eq0; apply/orP; right; apply/eqP.
by move: H_valid_arrival_curve ⇒ [T1 T2].
Qed.
task_rbf 0 = 0.
Proof.
rewrite /task_rbf /task_request_bound_function.
apply/eqP; rewrite muln_eq0; apply/orP; right; apply/eqP.
by move: H_valid_arrival_curve ⇒ [T1 T2].
Qed.
We prove that task_rbf is monotone.
Lemma task_rbf_monotone:
monotone task_rbf leq.
Proof.
rewrite /monotone; intros ? ? LE.
rewrite /task_rbf /task_request_bound_function leq_mul2l.
apply/orP; right.
by move: H_valid_arrival_curve ⇒ [_ T]; apply T.
Qed.
monotone task_rbf leq.
Proof.
rewrite /monotone; intros ? ? LE.
rewrite /task_rbf /task_request_bound_function leq_mul2l.
apply/orP; right.
by move: H_valid_arrival_curve ⇒ [_ T]; apply T.
Qed.
Variable j : Job.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_of_tsk : job_task j = tsk.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_of_tsk : job_task j = tsk.
Then we prove that task_rbf 1 is greater than or equal to task cost.
Lemma task_rbf_1_ge_task_cost:
task_rbf 1 ≥ task_cost tsk.
Proof.
have ALT: ∀ n, n = 0 ∨ n > 0
by clear; intros n; destruct n; [left | right].
specialize (ALT (task_cost tsk)); destruct ALT as [Z | POS]; first by rewrite Z.
rewrite leqNgt; apply/negP; intros CONTR.
move: H_is_arrival_curve ⇒ ARRB.
specialize (ARRB (job_arrival j) (job_arrival j + 1)).
feed ARRB; first by rewrite leq_addr.
rewrite addKn in ARRB.
move: CONTR; rewrite /task_rbf /task_request_bound_function; move ⇒ CONTR.
move: CONTR; rewrite -{2}[task_cost tsk]muln1 ltn_mul2l; move ⇒ /andP [_ CONTR].
move: CONTR; rewrite -addn1 -{3}[1]add0n leq_add2r leqn0; move ⇒ /eqP CONTR.
move: ARRB; rewrite CONTR leqn0 eqn0Ngt; move ⇒ /negP T; apply: T.
rewrite /number_of_task_arrivals -has_predT.
rewrite /task_arrivals_between.
apply/hasP; ∃ j; last by done.
rewrite /arrivals_between addn1 big_nat_recl; last by done.
rewrite big_geq ?cats0; last by done.
rewrite mem_filter.
apply/andP; split.
- by apply/eqP.
- move: H_j_arrives ⇒ [t ARR].
move: (ARR) ⇒ CONS.
apply H_arrival_times_are_consistent in CONS.
by rewrite CONS.
Qed.
End RequestBoundFunctions.
task_rbf 1 ≥ task_cost tsk.
Proof.
have ALT: ∀ n, n = 0 ∨ n > 0
by clear; intros n; destruct n; [left | right].
specialize (ALT (task_cost tsk)); destruct ALT as [Z | POS]; first by rewrite Z.
rewrite leqNgt; apply/negP; intros CONTR.
move: H_is_arrival_curve ⇒ ARRB.
specialize (ARRB (job_arrival j) (job_arrival j + 1)).
feed ARRB; first by rewrite leq_addr.
rewrite addKn in ARRB.
move: CONTR; rewrite /task_rbf /task_request_bound_function; move ⇒ CONTR.
move: CONTR; rewrite -{2}[task_cost tsk]muln1 ltn_mul2l; move ⇒ /andP [_ CONTR].
move: CONTR; rewrite -addn1 -{3}[1]add0n leq_add2r leqn0; move ⇒ /eqP CONTR.
move: ARRB; rewrite CONTR leqn0 eqn0Ngt; move ⇒ /negP T; apply: T.
rewrite /number_of_task_arrivals -has_predT.
rewrite /task_arrivals_between.
apply/hasP; ∃ j; last by done.
rewrite /arrivals_between addn1 big_nat_recl; last by done.
rewrite big_geq ?cats0; last by done.
rewrite mem_filter.
apply/andP; split.
- by apply/eqP.
- move: H_j_arrives ⇒ [t ARR].
move: (ARR) ⇒ CONS.
apply H_arrival_times_are_consistent in CONS.
by rewrite CONS.
Qed.
End RequestBoundFunctions.