Library prosa.util.rewrite_facilities
Section RewriteFacilities.
Lemma diseq:
∀ {X : Type} (p : X → Prop) (x y : X),
¬ p x → p y → x ≠ y.
Proof. intros ? ? ? ? NP P EQ; subst; auto. Qed.
Lemma eqprop_to_eqbool {X : eqType} {a b : X}: a = b → a == b.
Proof. by intros; apply/eqP. Qed.
Lemma eqbool_true {X : eqType} {a b : X}: a == b → a == b = true.
Proof. by move =>/eqP EQ; subst b; rewrite eq_refl. Qed.
Lemma eqbool_false {X : eqType} {a b : X}: a != b → a == b = false.
Proof. by apply negbTE. Qed.
Lemma eqbool_to_eqprop {X : eqType} {a b : X}: a == b → a = b.
Proof. by intros; apply/eqP. Qed.
Lemma neqprop_to_neqbool {X : eqType} {a b : X}: a ≠ b → a != b.
Proof. by intros; apply/eqP. Qed.
Lemma neqbool_to_neqprop {X : eqType} {a b : X}: a != b → a ≠ b.
Proof. by intros; apply/eqP. Qed.
Lemma neq_sym {X : eqType} {a b : X}:
a != b → b != a.
Proof.
intros NEQ; apply/eqP; intros EQ;
subst b; move: NEQ ⇒ /eqP NEQ; auto. Qed.
Lemma neq_antirefl {X : eqType} {a : X}:
(a != a) = false.
Proof. by apply/eqP. Qed.
Lemma option_inj_eq {X : eqType} {a b : X}:
a == b → Some a == Some b.
Proof. by move ⇒ /eqP EQ; apply/eqP; rewrite EQ. Qed.
Lemma option_inj_neq {X : eqType} {a b : X}:
a != b → Some a != Some b.
Proof.
by move ⇒ /eqP NEQ;
apply/eqP; intros CONTR;
apply: NEQ; inversion_clear CONTR. Qed.
Lemma diseq:
∀ {X : Type} (p : X → Prop) (x y : X),
¬ p x → p y → x ≠ y.
Proof. intros ? ? ? ? NP P EQ; subst; auto. Qed.
Lemma eqprop_to_eqbool {X : eqType} {a b : X}: a = b → a == b.
Proof. by intros; apply/eqP. Qed.
Lemma eqbool_true {X : eqType} {a b : X}: a == b → a == b = true.
Proof. by move =>/eqP EQ; subst b; rewrite eq_refl. Qed.
Lemma eqbool_false {X : eqType} {a b : X}: a != b → a == b = false.
Proof. by apply negbTE. Qed.
Lemma eqbool_to_eqprop {X : eqType} {a b : X}: a == b → a = b.
Proof. by intros; apply/eqP. Qed.
Lemma neqprop_to_neqbool {X : eqType} {a b : X}: a ≠ b → a != b.
Proof. by intros; apply/eqP. Qed.
Lemma neqbool_to_neqprop {X : eqType} {a b : X}: a != b → a ≠ b.
Proof. by intros; apply/eqP. Qed.
Lemma neq_sym {X : eqType} {a b : X}:
a != b → b != a.
Proof.
intros NEQ; apply/eqP; intros EQ;
subst b; move: NEQ ⇒ /eqP NEQ; auto. Qed.
Lemma neq_antirefl {X : eqType} {a : X}:
(a != a) = false.
Proof. by apply/eqP. Qed.
Lemma option_inj_eq {X : eqType} {a b : X}:
a == b → Some a == Some b.
Proof. by move ⇒ /eqP EQ; apply/eqP; rewrite EQ. Qed.
Lemma option_inj_neq {X : eqType} {a b : X}:
a != b → Some a != Some b.
Proof.
by move ⇒ /eqP NEQ;
apply/eqP; intros CONTR;
apply: NEQ; inversion_clear CONTR. Qed.
Example
(* As a motivation for this file, we consider the following example. *)
Section Example.
(* Let X be an arbitrary type ... *)
Context {X : eqType}.
(* ... f be an arbitrary function bool → bool ... *)
Variable f : bool → bool.
(* ... p be an arbitrary predicate on X ... *)
Variable p : X → Prop.
(* ... and let a and b be two elements of X such that ... *)
Variables a b : X.
(* ... p holds for a and doesn't hold for b. *)
Hypothesis H_pa : p a.
Hypothesis H_npb : ¬ p b.
(* The following examples are commented out
to expose the insides of the proofs. *)
(*
(* Simplifying some relatively sophisticated
expressions can be quite tedious. *)
Goal f ((a == b) && f false) = f false.
Proof.
(* Things like simpl/compute make no sense here. *)
(* One can use replace to generate a new goal. *)
replace (a == b) with false; last first.
(* However, this leads to a "loss of focus". Moreover,
the resulting goal is not so trivial to prove. *)
{ apply/eqP; rewrite eq_sym eqbF_neg.
by apply/eqP; intros EQ; subst b; apply H_npb. }
by rewrite Bool.andb_false_l.
Abort.
*)
(*
(* The second attempt. *)
Goal f ((a == b) && f false) = f false.
(* With the lemmas above one can compose multiple
transformations in a single rewrite. *)
by rewrite (eqbool_false (neq_sym (neqprop_to_neqbool (diseq _ _ _ H_npb H_pa))))
Bool.andb_false_l.
Qed.
*)
End Example.
End RewriteFacilities.
Section Example.
(* Let X be an arbitrary type ... *)
Context {X : eqType}.
(* ... f be an arbitrary function bool → bool ... *)
Variable f : bool → bool.
(* ... p be an arbitrary predicate on X ... *)
Variable p : X → Prop.
(* ... and let a and b be two elements of X such that ... *)
Variables a b : X.
(* ... p holds for a and doesn't hold for b. *)
Hypothesis H_pa : p a.
Hypothesis H_npb : ¬ p b.
(* The following examples are commented out
to expose the insides of the proofs. *)
(*
(* Simplifying some relatively sophisticated
expressions can be quite tedious. *)
Goal f ((a == b) && f false) = f false.
Proof.
(* Things like simpl/compute make no sense here. *)
(* One can use replace to generate a new goal. *)
replace (a == b) with false; last first.
(* However, this leads to a "loss of focus". Moreover,
the resulting goal is not so trivial to prove. *)
{ apply/eqP; rewrite eq_sym eqbF_neg.
by apply/eqP; intros EQ; subst b; apply H_npb. }
by rewrite Bool.andb_false_l.
Abort.
*)
(*
(* The second attempt. *)
Goal f ((a == b) && f false) = f false.
(* With the lemmas above one can compose multiple
transformations in a single rewrite. *)
by rewrite (eqbool_false (neq_sym (neqprop_to_neqbool (diseq _ _ _ H_npb H_pa))))
Bool.andb_false_l.
Qed.
*)
End Example.
End RewriteFacilities.