Library prosa.analysis.facts.model.workload
Require Export prosa.model.aggregate.workload.
Require Export prosa.analysis.facts.behavior.arrivals.
Require Export prosa.analysis.facts.behavior.arrivals.
Lemmas about Workload of Sets of Jobs
In this file, we establish basic facts about the workload of sets of jobs.
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Consider any job arrival sequence.
For simplicity, let's define a local name.
We prove that workload can be split into two parts.
Lemma workload_of_jobs_cat:
∀ t t1 t2 P,
t1 ≤ t ≤ t2 →
workload_of_jobs P (arrivals_between t1 t2) =
workload_of_jobs P (arrivals_between t1 t)
+ workload_of_jobs P (arrivals_between t t2).
Proof.
move ⇒ t t1 t2 P /andP [GE LE].
rewrite /workload_of_jobs /arrivals_between.
by rewrite (arrivals_between_cat _ _ t) // big_cat.
Qed.
End WorkloadFacts.
∀ t t1 t2 P,
t1 ≤ t ≤ t2 →
workload_of_jobs P (arrivals_between t1 t2) =
workload_of_jobs P (arrivals_between t1 t)
+ workload_of_jobs P (arrivals_between t t2).
Proof.
move ⇒ t t1 t2 P /andP [GE LE].
rewrite /workload_of_jobs /arrivals_between.
by rewrite (arrivals_between_cat _ _ t) // big_cat.
Qed.
End WorkloadFacts.