Library prosa.model.priority.rate_monotonic
Rate-Monotonic Fixed-Priority Policy
Instance RM (Task : TaskType) `{SporadicModel Task} : FP_policy Task :=
{
hep_task (tsk1 tsk2 : Task) := task_min_inter_arrival_time tsk1 ≤ task_min_inter_arrival_time tsk2
}.
{
hep_task (tsk1 tsk2 : Task) := task_min_inter_arrival_time tsk1 ≤ task_min_inter_arrival_time tsk2
}.
In this section, we prove a few basic properties of the RM policy.
Consider sporadic tasks...
...and jobs stemming from these tasks.
RM is reflexive.
Lemma RM_is_reflexive : reflexive_priorities.
Proof. by move⇒ ?; rewrite /hep_job_at /JLFP_to_JLDP /hep_job /FP_to_JLFP /hep_task /RM. Qed.
Proof. by move⇒ ?; rewrite /hep_job_at /JLFP_to_JLDP /hep_job /FP_to_JLFP /hep_task /RM. Qed.
RM is transitive.
RM is total.
Lemma RM_is_total : total_priorities.
Proof. by move⇒ t j1 j2; apply leq_total. Qed.
End Properties.
Proof. by move⇒ t j1 j2; apply leq_total. Qed.
End Properties.
We add the above lemmas into a "Hint Database" basic_facts, so Coq
will be able to apply them automatically.
Hint Resolve
RM_is_reflexive
RM_is_transitive
RM_is_total
: basic_facts.
RM_is_reflexive
RM_is_transitive
RM_is_total
: basic_facts.