Library prosa.classic.implementation.uni.basic.extraction_tdma

(* Require Import Extraction. *) (* Required for Coq 8.7 *)
Require Import prosa.classic.analysis.uni.basic.tdma_wcrt_analysis.
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq bigop div.

Set Implicit Arguments.

CoInductive Task_T :Type:=
  build_task: natnatnatnat
              Task_T.

Definition get_slot(tsk:Task_T):=
  match tsk with
  | build_task x _ _ _x end.

Definition get_cost (tsk:Task_T):=
 match tsk with
  | build_task _ x _ _x end.

Definition get_D (tsk:Task_T):=
 match tsk with
  | build_task _ _ x _x end.

Definition get_P (tsk:Task_T):=
  match tsk with
  | build_task _ _ _ xx end.

Definition task_eq (t1 t2: Task_T) :=
      (get_slot t1 == get_slot t2)&&
      (get_cost t1 == get_cost t2)&&
      (get_D t1 == get_D t2)&&
      (get_P t1 == get_P t2) .

Fixpoint In (a:Task_T) (l:list Task_T) : Prop :=
    match l with
      | nilFalse
      | b :: ma=b In a m
    end.

Definition schedulable_tsk T tsk:=
    let bound := WCRT_OneJobTDMA.WCRT_formula T (get_slot tsk) (get_cost tsk) in
  if (bound get_D tsk)&& (bound get_P tsk) then true else false .

Fixpoint schedulability_test T (l: list Task_T):=
match l with
|niltrue
|x::s(schedulable_tsk T x) && (schedulability_test T s)
end.

Theorem schedulability_test_valid T TL:
schedulability_test T TL
     ( tsk, In tsk TL schedulable_tsk T tsk) .

Definition cycle l:=
(foldr plus 0 (map get_slot l)).

Definition schedulability_tdma (l: list Task_T):=
schedulability_test (cycle l) l.

Theorem schedulability_tdma_valid task_list:
   schedulability_tdma task_list
     ( tsk, In tsk task_list schedulable_tsk (cycle task_list) tsk) .

(*Eval compute in cycle :: build_task(2,3,4,4);(6,2,5,6).

Eval compute in WCRT_OneJobTDMA.WCRT_formula 4 2 3.

Eval compute in schedulability_tdma ::(2,3,7,7);(1,2,6,6). *)


(*Extract Inductive unit => "unit"  "()" .
Extract Inductive bool =>"bool"  "true" "false" .
Extract Inductive nat => int  "0" "Pervasives.succ"
 "(fun fO fS n -> if n=0 then fO () else fS (n-1))".
Extract Inductive list => "list"  "[]" "(::)" .
Extract Constant eqn => "(=)".
Extract Constant addn => "(+)".
Extract Constant subn => "fun n m -> Pervasives.max 0 (n-m)".
Extract Constant muln => "( * )".
Extract Inlined Constant leq => "(<=)".
Recursive Extraction schedulability_tdma.
Extraction "schedulability_tdma.ml" schedulability_tdma. *)