Library prosa.classic.implementation.uni.basic.fp_rta_example
Require Import prosa.classic.util.all.
Require Import prosa.classic.model.arrival.basic.job prosa.classic.model.arrival.basic.task prosa.classic.model.priority.
Require Import prosa.classic.model.schedule.uni.schedule prosa.classic.model.schedule.uni.schedulability.
Require Import prosa.classic.analysis.uni.basic.workload_bound_fp
prosa.classic.analysis.uni.basic.fp_rta_comp.
Require Import prosa.classic.implementation.job prosa.classic.implementation.task
prosa.classic.implementation.arrival_sequence.
Require Import prosa.classic.implementation.uni.basic.schedule.
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq bigop div.
Module ResponseTimeAnalysisFP.
Import Job UniprocessorSchedule SporadicTaskset Priority Schedulability
WorkloadBoundFP ResponseTimeIterationFP.
Import ConcreteJob ConcreteTask ConcreteArrivalSequence ConcreteScheduler.
(* In this section, we run the FP RTA on a simple task set to show that the theorems
contain no contradictory assumptions. *)
Section ExampleRTA.
Let tsk1 := {| task_id := 1; task_cost := 1; task_period := 4; task_deadline := 5|}.
Let tsk2 := {| task_id := 2; task_cost := 1; task_period := 6; task_deadline := 5|}.
Let tsk3 := {| task_id := 3; task_cost := 1; task_period := 6; task_deadline := 6|}.
(* Let ts be a task set containing these three tasks.
(Note that periods are not unique and one of the tasks has an arbitrary deadline.) *)
Program Let ts := Build_set [:: tsk1; tsk2; tsk3] _.
(* Also note that the task set has valid parameters. *)
Fact ts_has_valid_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
(* Next, recall the FP RTA schedulability test using RM as the FP policy. *)
Let RTA_claimed_bounds :=
fp_claimed_bounds task_cost task_period task_deadline (RM task_period).
Let schedulability_test :=
fp_schedulable task_cost task_period task_deadline (RM task_period).
(* First, we show that the schedulability test returns the following bounds, ... *)
Fact RTA_yields_these_bounds :
RTA_claimed_bounds ts = Some [:: (tsk1, 1); (tsk2, 3); (tsk3, 3)].
(* ...so the schedulability test indeed returns true. *)
Fact schedulability_test_succeeds :
schedulability_test ts = true.
(* Now, let's show that the task set is schedulable. *)
(* Let arr_seq be the periodic arrival sequence from ts. *)
Let arr_seq := periodic_arrival_sequence ts.
(* Assume rate-monotonic priorities... *)
Let higher_eq_priority := FP_to_JLDP job_task (RM task_period).
(* ... and recall that this priority assignment is total. *)
Fact priority_is_total:
∀ t, total (higher_eq_priority t).
(* Let sched be the work-conserving RM scheduler. *)
Let sched := scheduler job_arrival job_cost arr_seq higher_eq_priority.
(* Recall the definition of deadline miss. *)
Let no_deadline_missed_by :=
task_misses_no_deadline job_arrival job_cost job_deadline job_task arr_seq sched.
(* Next, by using the result of the RTA, we prove that the task set is schedulable. *)
Corollary ts_is_schedulable:
∀ tsk,
tsk \in ts →
no_deadline_missed_by tsk.
End ExampleRTA.
End ResponseTimeAnalysisFP.
Require Import prosa.classic.model.arrival.basic.job prosa.classic.model.arrival.basic.task prosa.classic.model.priority.
Require Import prosa.classic.model.schedule.uni.schedule prosa.classic.model.schedule.uni.schedulability.
Require Import prosa.classic.analysis.uni.basic.workload_bound_fp
prosa.classic.analysis.uni.basic.fp_rta_comp.
Require Import prosa.classic.implementation.job prosa.classic.implementation.task
prosa.classic.implementation.arrival_sequence.
Require Import prosa.classic.implementation.uni.basic.schedule.
From mathcomp Require Import ssreflect ssrbool ssrnat eqtype seq bigop div.
Module ResponseTimeAnalysisFP.
Import Job UniprocessorSchedule SporadicTaskset Priority Schedulability
WorkloadBoundFP ResponseTimeIterationFP.
Import ConcreteJob ConcreteTask ConcreteArrivalSequence ConcreteScheduler.
(* In this section, we run the FP RTA on a simple task set to show that the theorems
contain no contradictory assumptions. *)
Section ExampleRTA.
Let tsk1 := {| task_id := 1; task_cost := 1; task_period := 4; task_deadline := 5|}.
Let tsk2 := {| task_id := 2; task_cost := 1; task_period := 6; task_deadline := 5|}.
Let tsk3 := {| task_id := 3; task_cost := 1; task_period := 6; task_deadline := 6|}.
(* Let ts be a task set containing these three tasks.
(Note that periods are not unique and one of the tasks has an arbitrary deadline.) *)
Program Let ts := Build_set [:: tsk1; tsk2; tsk3] _.
(* Also note that the task set has valid parameters. *)
Fact ts_has_valid_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
(* Next, recall the FP RTA schedulability test using RM as the FP policy. *)
Let RTA_claimed_bounds :=
fp_claimed_bounds task_cost task_period task_deadline (RM task_period).
Let schedulability_test :=
fp_schedulable task_cost task_period task_deadline (RM task_period).
(* First, we show that the schedulability test returns the following bounds, ... *)
Fact RTA_yields_these_bounds :
RTA_claimed_bounds ts = Some [:: (tsk1, 1); (tsk2, 3); (tsk3, 3)].
(* ...so the schedulability test indeed returns true. *)
Fact schedulability_test_succeeds :
schedulability_test ts = true.
(* Now, let's show that the task set is schedulable. *)
(* Let arr_seq be the periodic arrival sequence from ts. *)
Let arr_seq := periodic_arrival_sequence ts.
(* Assume rate-monotonic priorities... *)
Let higher_eq_priority := FP_to_JLDP job_task (RM task_period).
(* ... and recall that this priority assignment is total. *)
Fact priority_is_total:
∀ t, total (higher_eq_priority t).
(* Let sched be the work-conserving RM scheduler. *)
Let sched := scheduler job_arrival job_cost arr_seq higher_eq_priority.
(* Recall the definition of deadline miss. *)
Let no_deadline_missed_by :=
task_misses_no_deadline job_arrival job_cost job_deadline job_task arr_seq sched.
(* Next, by using the result of the RTA, we prove that the task set is schedulable. *)
Corollary ts_is_schedulable:
∀ tsk,
tsk \in ts →
no_deadline_missed_by tsk.
End ExampleRTA.
End ResponseTimeAnalysisFP.