Library prosa.classic.util.nat
Require Export prosa.util.nat.
Require Import prosa.classic.util.tactics mathcomp.zify.zify.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div.
(* Additional lemmas about natural numbers. *)
Section NatLemmas.
Lemma addnb (b1 b2 : bool) : (b1 + b2) != 0 = b1 || b2.
Lemma subh4:
∀ m n p,
m ≤ n →
p ≤ n →
(m == n - p) = (p == n - m).
Lemma addmovr:
∀ m n p,
m ≥ n →
(m - n = p ↔ m = p + n).
Lemma addmovl:
∀ m n p,
m ≥ n →
(p = m - n ↔ p + n = m).
Lemma ltSnm : ∀ n m, n.+1 < m → n < m.
Lemma min_lt_same :
∀ x y z,
minn x z < minn y z → x < y.
End NatLemmas.
Require Import prosa.classic.util.tactics mathcomp.zify.zify.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div.
(* Additional lemmas about natural numbers. *)
Section NatLemmas.
Lemma addnb (b1 b2 : bool) : (b1 + b2) != 0 = b1 || b2.
Lemma subh4:
∀ m n p,
m ≤ n →
p ≤ n →
(m == n - p) = (p == n - m).
Lemma addmovr:
∀ m n p,
m ≥ n →
(m - n = p ↔ m = p + n).
Lemma addmovl:
∀ m n p,
m ≥ n →
(p = m - n ↔ p + n = m).
Lemma ltSnm : ∀ n m, n.+1 < m → n < m.
Lemma min_lt_same :
∀ x y z,
minn x z < minn y z → x < y.
End NatLemmas.