Library prosa.classic.implementation.arrival_sequence
Require Import prosa.classic.util.all.
Require Import prosa.classic.model.arrival.basic.arrival_sequence prosa.classic.model.arrival.basic.job
prosa.classic.model.arrival.basic.task prosa.classic.model.arrival.basic.task_arrival.
Require Import prosa.classic.implementation.task prosa.classic.implementation.job.
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat eqtype seq div.
Module ConcreteArrivalSequence.
Import Job ArrivalSequence ConcreteTask ConcreteJob SporadicTaskset TaskArrival.
Section PeriodicArrivals.
Variable ts: concrete_taskset.
(* At any time t, we release Some job of tsk if t is a multiple of the period,
otherwise we release None. *)
Definition add_job (arr_time: time) (tsk: concrete_task) :=
if task_period tsk %| arr_time then
Some (Build_concrete_job (arr_time %/ task_period tsk) arr_time
(task_cost tsk) (task_deadline tsk) tsk)
else
None.
(* The arrival sequence at any time t is simply the partial map of add_job. *)
Definition periodic_arrival_sequence (t: time) := pmap (add_job t) ts.
End PeriodicArrivals.
Section Proofs.
(* Let ts be any concrete task set with valid parameters. *)
Variable ts: concrete_taskset.
Hypothesis H_valid_task_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
(* Regarding the periodic arrival sequence built from ts, we prove that...*)
Let arr_seq := periodic_arrival_sequence ts.
(* ... arrival times are consistent, ... *)
Theorem periodic_arrivals_are_consistent:
arrival_times_are_consistent job_arrival arr_seq.
Proof.
move ⇒ j t ARRj.
rewrite /arrives_at mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset:
∀ j,
arrives_in arr_seq j →
job_task j \in ts.
Proof.
move ⇒ j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ..., jobs have valid parameters, ... *)
Theorem periodic_arrivals_valid_job_parameters:
∀ j,
arrives_in arr_seq j →
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
Proof.
rename H_valid_task_parameters into PARAMS.
unfold valid_sporadic_taskset, is_valid_sporadic_task in ×.
move ⇒ j [t ARRj].
rewrite mem_pmap in ARRj; move: ARRj ⇒ /mapP [tsk IN SOME].
unfold add_job in SOME; desf.
specialize (PARAMS tsk IN); des.
unfold valid_sporadic_job, valid_realtime_job, job_cost_positive.
by repeat split; try (by done); apply leqnn.
Qed.
(* ... job arrivals satisfy the sporadic task model, ... *)
Theorem periodic_arrivals_are_sporadic:
sporadic_task_model task_period job_arrival job_task arr_seq.
Proof.
move ⇒ j j' /eqP DIFF [arr ARR] [arr' ARR'] SAMEtsk LE.
rewrite eqE /= /job_eqdef negb_and /= SAMEtsk eq_refl orbF in DIFF.
rewrite 2!mem_pmap in ARR ARR'.
move: ARR ARR' ⇒ /mapP [tsk_j INj SOMEj] /mapP [tsk_j' INj' SOMEj'].
unfold add_job in SOMEj, SOMEj'; desf; simpl in *;
move: Heq0 Heq ⇒ /dvdnP [k DIV] /dvdnP [k' DIV'].
{
rewrite DIV DIV' -mulSnr.
rewrite leq_eqVlt in LE; move: LE ⇒ /orP [/eqP EQ | LESS].
{
exfalso; move: DIFF ⇒ /negP DIFF; apply DIFF.
by subst; rewrite EQ !eq_refl.
}
subst; rewrite leq_mul2r; apply/orP; right.
by rewrite ltn_mul2r in LESS; move: LESS ⇒ /andP [_ LT].
}
Qed.
(* ... and the arrival sequence has no duplicate jobs. *)
Theorem periodic_arrivals_is_a_set:
arrival_sequence_is_a_set arr_seq.
Proof.
intros t.
unfold arr_seq, periodic_arrival_sequence.
apply (pmap_uniq) with (g := job_task); last by destruct ts.
by unfold add_job, ocancel; intro tsk; desf.
Qed.
End Proofs.
End ConcreteArrivalSequence.
Require Import prosa.classic.model.arrival.basic.arrival_sequence prosa.classic.model.arrival.basic.job
prosa.classic.model.arrival.basic.task prosa.classic.model.arrival.basic.task_arrival.
Require Import prosa.classic.implementation.task prosa.classic.implementation.job.
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat eqtype seq div.
Module ConcreteArrivalSequence.
Import Job ArrivalSequence ConcreteTask ConcreteJob SporadicTaskset TaskArrival.
Section PeriodicArrivals.
Variable ts: concrete_taskset.
(* At any time t, we release Some job of tsk if t is a multiple of the period,
otherwise we release None. *)
Definition add_job (arr_time: time) (tsk: concrete_task) :=
if task_period tsk %| arr_time then
Some (Build_concrete_job (arr_time %/ task_period tsk) arr_time
(task_cost tsk) (task_deadline tsk) tsk)
else
None.
(* The arrival sequence at any time t is simply the partial map of add_job. *)
Definition periodic_arrival_sequence (t: time) := pmap (add_job t) ts.
End PeriodicArrivals.
Section Proofs.
(* Let ts be any concrete task set with valid parameters. *)
Variable ts: concrete_taskset.
Hypothesis H_valid_task_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
(* Regarding the periodic arrival sequence built from ts, we prove that...*)
Let arr_seq := periodic_arrival_sequence ts.
(* ... arrival times are consistent, ... *)
Theorem periodic_arrivals_are_consistent:
arrival_times_are_consistent job_arrival arr_seq.
Proof.
move ⇒ j t ARRj.
rewrite /arrives_at mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ... every job comes from the task set, ... *)
Theorem periodic_arrivals_all_jobs_from_taskset:
∀ j,
arrives_in arr_seq j →
job_task j \in ts.
Proof.
move ⇒ j [t ARRj].
rewrite mem_pmap in ARRj.
move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
by unfold add_job in *; desf.
Qed.
(* ..., jobs have valid parameters, ... *)
Theorem periodic_arrivals_valid_job_parameters:
∀ j,
arrives_in arr_seq j →
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
Proof.
rename H_valid_task_parameters into PARAMS.
unfold valid_sporadic_taskset, is_valid_sporadic_task in ×.
move ⇒ j [t ARRj].
rewrite mem_pmap in ARRj; move: ARRj ⇒ /mapP [tsk IN SOME].
unfold add_job in SOME; desf.
specialize (PARAMS tsk IN); des.
unfold valid_sporadic_job, valid_realtime_job, job_cost_positive.
by repeat split; try (by done); apply leqnn.
Qed.
(* ... job arrivals satisfy the sporadic task model, ... *)
Theorem periodic_arrivals_are_sporadic:
sporadic_task_model task_period job_arrival job_task arr_seq.
Proof.
move ⇒ j j' /eqP DIFF [arr ARR] [arr' ARR'] SAMEtsk LE.
rewrite eqE /= /job_eqdef negb_and /= SAMEtsk eq_refl orbF in DIFF.
rewrite 2!mem_pmap in ARR ARR'.
move: ARR ARR' ⇒ /mapP [tsk_j INj SOMEj] /mapP [tsk_j' INj' SOMEj'].
unfold add_job in SOMEj, SOMEj'; desf; simpl in *;
move: Heq0 Heq ⇒ /dvdnP [k DIV] /dvdnP [k' DIV'].
{
rewrite DIV DIV' -mulSnr.
rewrite leq_eqVlt in LE; move: LE ⇒ /orP [/eqP EQ | LESS].
{
exfalso; move: DIFF ⇒ /negP DIFF; apply DIFF.
by subst; rewrite EQ !eq_refl.
}
subst; rewrite leq_mul2r; apply/orP; right.
by rewrite ltn_mul2r in LESS; move: LESS ⇒ /andP [_ LT].
}
Qed.
(* ... and the arrival sequence has no duplicate jobs. *)
Theorem periodic_arrivals_is_a_set:
arrival_sequence_is_a_set arr_seq.
Proof.
intros t.
unfold arr_seq, periodic_arrival_sequence.
apply (pmap_uniq) with (g := job_task); last by destruct ts.
by unfold add_job, ocancel; intro tsk; desf.
Qed.
End Proofs.
End ConcreteArrivalSequence.