Library prosa.classic.implementation.global.jitter.arrival_sequence

Require Import prosa.classic.util.all.
Require Import prosa.classic.model.arrival.basic.arrival_sequence prosa.classic.model.arrival.basic.task prosa.classic.model.arrival.basic.task_arrival.
Require Import prosa.classic.model.schedule.global.jitter.job.
Require Import prosa.classic.implementation.global.jitter.task prosa.classic.implementation.global.jitter.job.
From mathcomp Require Import ssreflect ssrbool ssrfun ssrnat eqtype seq div.

Module ConcreteArrivalSequence.

  Import JobWithJitter ArrivalSequence ConcreteTask ConcreteJob SporadicTaskset TaskArrival.

  Section PeriodicArrivals.

    Variable ts: concrete_taskset.

    (* At any time t, we release Some job of tsk if t is a multiple of the period,
       otherwise we release None. *)

    Definition add_job (arr: time) (tsk: concrete_task) :=
      if task_period tsk %| arr then
        Some (Build_concrete_job (arr %/ task_period tsk) arr (task_cost tsk) (task_deadline tsk) (task_jitter tsk) tsk)
      else
        None.

    (* The arrival sequence at any time t is simply the partial map of add_job. *)
    Definition periodic_arrival_sequence (t: time) := pmap (add_job t) ts.

  End PeriodicArrivals.

  Section Proofs.

    (* Let ts be any concrete task set with valid parameters. *)
    Variable ts: concrete_taskset.
    Hypothesis H_valid_task_parameters:
      valid_sporadic_taskset task_cost task_period task_deadline ts.

    (* Regarding the periodic arrival sequence built from ts, we prove that...*)
    Let arr_seq := periodic_arrival_sequence ts.

    (* ... arrival times are consistent, ... *)
    Theorem periodic_arrivals_are_consistent:
      arrival_times_are_consistent job_arrival arr_seq.
    Proof.
      movej t ARRj.
      rewrite /arrives_at mem_pmap in ARRj.
      move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
      by unfold add_job in *; desf.
    Qed.

    (* ... every job comes from the task set, ... *)
    Theorem periodic_arrivals_all_jobs_from_taskset:
       j,
        arrives_in arr_seq j
        job_task j \in ts.
    Proof.
      movej [t ARRj].
      rewrite mem_pmap in ARRj.
      move: ARRj ⇒ /mapP ARRj; destruct ARRj as [tsk IN SOME].
      by unfold add_job in *; desf.
    Qed.

    (* ..., jobs have valid parameters, ... *)
    Theorem periodic_arrivals_valid_job_parameters:
       j,
        arrives_in arr_seq j
        valid_sporadic_job_with_jitter task_cost task_deadline task_jitter job_cost job_deadline job_task job_jitter j.
    Proof.
      rename H_valid_task_parameters into PARAMS.
      unfold valid_sporadic_taskset, is_valid_sporadic_task in ×.
      movej [t ARRj].
      rewrite mem_pmap in ARRj; move: ARRj ⇒ /mapP [tsk IN SOME].
      unfold add_job in SOME; desf.
      specialize (PARAMS tsk IN); des.
      unfold valid_sporadic_job, valid_realtime_job, job_cost_positive.
      by repeat split; try (by done); apply leqnn.
    Qed.

    (* ... job arrivals satisfy the sporadic task model, ... *)
    Theorem periodic_arrivals_are_sporadic:
      sporadic_task_model task_period job_arrival job_task arr_seq.
    Proof.
      movej j' /eqP DIFF [arr ARR] [arr' ARR'] SAMEtsk LE.
      rewrite eqE /= /job_eqdef negb_and /= SAMEtsk eq_refl orbF in DIFF.
      rewrite 2!mem_pmap in ARR ARR'.
      move: ARR ARR' ⇒ /mapP [tsk_j INj SOMEj] /mapP [tsk_j' INj' SOMEj'].
      unfold add_job in SOMEj, SOMEj'; desf; simpl in *;
      move: Heq0 Heq ⇒ /dvdnP [k DIV] /dvdnP [k' DIV'].
      {
        rewrite DIV DIV' -mulSnr.
        rewrite leq_eqVlt in LE; move: LE ⇒ /orP [/eqP EQ | LESS].
        {
          exfalso; move: DIFF ⇒ /negP DIFF; apply DIFF.
          by subst; rewrite EQ !eq_refl.
        }
        subst; rewrite leq_mul2r; apply/orP; right.
        by rewrite ltn_mul2r in LESS; move: LESS ⇒ /andP [_ LT].
      }
    Qed.

    (* ... and the arrival sequence has no duplicate jobs. *)
    Theorem periodic_arrivals_is_a_set:
      arrival_sequence_is_a_set arr_seq.
    Proof.
      intros t.
      unfold arr_seq, periodic_arrival_sequence.
      apply (pmap_uniq) with (g := job_task); last by destruct ts.
      by unfold add_job, ocancel; intro tsk; desf.
    Qed.

  End Proofs.

End ConcreteArrivalSequence.