Library prosa.classic.model.schedule.global.basic.constrained_deadlines

Require Import prosa.classic.util.all.
Require Import prosa.classic.model.arrival.basic.task prosa.classic.model.arrival.basic.job prosa.classic.model.priority prosa.classic.model.arrival.basic.task_arrival.
Require Import prosa.classic.model.schedule.global.basic.schedule prosa.classic.model.schedule.global.basic.interference
               prosa.classic.model.schedule.global.basic.platform.
From mathcomp Require Import ssreflect ssrbool ssrfun eqtype ssrnat seq fintype bigop.

Module ConstrainedDeadlines.

  Import Job SporadicTaskset ScheduleOfSporadicTask SporadicTaskset
         TaskArrival Interference Priority Platform.

  Section Lemmas.

    Context {sporadic_task: eqType}.
    Variable task_cost: sporadic_task time.
    Variable task_period: sporadic_task time.
    Variable task_deadline: sporadic_task time.

    Context {Job: eqType}.
    Variable job_arrival: Job time.
    Variable job_cost: Job time.
    Variable job_deadline: Job time.
    Variable job_task: Job sporadic_task.

    (* Assume any job arrival sequence ... *)
    Variable arr_seq: arrival_sequence Job.

    (* ... and any schedule of this arrival sequence. *)
    Context {num_cpus: nat}.
    Variable sched: schedule Job num_cpus.
    Hypothesis H_jobs_come_from_arrival_sequence:
      jobs_come_from_arrival_sequence sched arr_seq.

    (* Assume all jobs have valid parameters, ...*)
    Hypothesis H_valid_job_parameters:
       j,
        arrives_in arr_seq j
        valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.

    (* In this section we prove the absence of multiple jobs of the same
       task when constrained deadlines are assumed.  *)

    Section NoMultipleJobs.

      (* Assume any work-conserving priority-based scheduler. *)
      Variable higher_eq_priority: JLDP_policy Job.
      Hypothesis H_work_conserving: work_conserving job_arrival job_cost arr_seq sched.
      Hypothesis H_respects_JLDP_policy:
        respects_JLDP_policy job_arrival job_cost arr_seq sched higher_eq_priority.

      (* Consider task set ts. *)
      Variable ts: taskset_of sporadic_task.

      (* Assume that all jobs come from the taskset. *)
      Hypothesis H_all_jobs_from_taskset:
         j,
          arrives_in arr_seq j job_task j \in ts.

      (* Suppose that jobs are sequential, ...*)
      Hypothesis H_sequential_jobs: sequential_jobs sched.
      (* ... jobs must arrive to execute, ... *)
      Hypothesis H_completed_jobs_dont_execute:
        completed_jobs_dont_execute job_cost sched.
      (* ... and jobs do not execute after completion. *)
      Hypothesis H_jobs_must_arrive_to_execute:
        jobs_must_arrive_to_execute job_arrival sched.

      (* Assume that the schedule satisfies the sporadic task model ...*)
      Hypothesis H_sporadic_tasks:
        sporadic_task_model task_period job_arrival job_task arr_seq.

      (* Consider a valid task tsk, ...*)
      Variable tsk: sporadic_task.
      Hypothesis H_valid_task: is_valid_sporadic_task task_cost task_period task_deadline tsk.

      (*... whose job j ... *)
      Variable j: Job.
      Hypothesis H_j_arrives: arrives_in arr_seq j.
      Variable H_job_of_tsk: job_task j = tsk.

      (*... is backlogged at time t. *)
      Variable t: time.
      Hypothesis H_j_backlogged: backlogged job_arrival job_cost sched j t.

      (* Assume that any previous jobs of tsk have completed by the period. *)
      Hypothesis H_all_previous_jobs_completed :
         j_other tsk_other,
          arrives_in arr_seq j_other
          job_task j_other = tsk_other
          job_arrival j_other + task_period tsk_other t
          completed job_cost sched j_other (job_arrival j_other + task_period (job_task j_other)).

      Let scheduled_task_other_than (tsk tsk_other: sporadic_task) :=
        task_is_scheduled job_task sched tsk_other t && (tsk_other != tsk).

      (* Then, there can be at most one pending job of each task at time t. *)
      Lemma platform_at_most_one_pending_job_of_each_task :
         j1 j2,
          arrives_in arr_seq j1
          arrives_in arr_seq j2
          pending job_arrival job_cost sched j1 t
          pending job_arrival job_cost sched j2 t
          job_task j1 = job_task j2
          j1 = j2.
      Proof.
        rename H_sporadic_tasks into SPO, H_all_previous_jobs_completed into PREV.
        intros j1 j2 ARR1 ARR2 PENDING1 PENDING2 SAMEtsk.
        apply/eqP; rewrite -[_ == _]negbK; apply/negP; red; move ⇒ /eqP DIFF.
        move: PENDING1 PENDING2 ⇒ /andP [ARRIVED1 /negP NOTCOMP1] /andP [ARRIVED2 /negP NOTCOMP2].
        destruct (leqP (job_arrival j1) (job_arrival j2)) as [BEFORE1 | BEFORE2].
        {
          specialize (SPO j1 j2 DIFF ARR1 ARR2 SAMEtsk BEFORE1).
          exploit (PREV j1 (job_task j1) ARR1);
            [by done | by apply leq_trans with (n := job_arrival j2) | intros COMP1].
          apply NOTCOMP1.
          ( try ( apply completion_monotonic with (t0 := job_arrival j1 + task_period (job_task j1)) ) ||
          apply completion_monotonic with (t := job_arrival j1 + task_period (job_task j1)));
            try (by done).
          by apply leq_trans with (n := job_arrival j2).
        }
        {
          apply ltnW in BEFORE2.
          exploit (SPO j2 j1); try (by done); [by red; ins; subst | intro SPO'].
          exploit (PREV j2 (job_task j2) ARR2);
            [by done | by apply leq_trans with (n := job_arrival j1) | intros COMP2].
          apply NOTCOMP2.
          ( try ( apply completion_monotonic with (t0 := job_arrival j2 + task_period (job_task j2)) ) ||
          apply completion_monotonic with (t := job_arrival j2 + task_period (job_task j2)));
            try (by done).
          by apply leq_trans with (n := job_arrival j1).
        }
      Qed.

      (* Therefore, all processors are busy with tasks other than tsk. *)
      Lemma platform_cpus_busy_with_interfering_tasks :
        count (scheduled_task_other_than tsk) ts = num_cpus.
      Proof.
        have UNIQ := platform_at_most_one_pending_job_of_each_task.
        rename H_all_jobs_from_taskset into FROMTS,
               H_sequential_jobs into SEQUENTIAL, H_work_conserving into WORK,
               H_respects_JLDP_policy into PRIO,
               H_j_backlogged into BACK, H_jobs_come_from_arrival_sequence into FROMarr,
               H_job_of_tsk into JOBtsk, H_valid_job_parameters into JOBPARAMS,
               H_valid_task into TASKPARAMS,
               H_all_previous_jobs_completed into PREV, H_completed_jobs_dont_execute into COMP,
               H_jobs_must_arrive_to_execute into ARRIVE.
        apply work_conserving_eq_work_conserving_count in WORK.
        unfold valid_sporadic_job, valid_realtime_job,
               respects_JLDP_policy, completed_jobs_dont_execute,
               sporadic_task_model, is_valid_sporadic_task,
               jobs_of_same_task_dont_execute_in_parallel,
               sequential_jobs in ×.
        apply/eqP; rewrite eqn_leq; apply/andP; split.
        {
          apply leq_trans with (n := count (fun xtask_is_scheduled job_task sched x t) ts);
            first by apply sub_count; first by red; movex /andP [SCHED _].
          unfold task_is_scheduled.
          apply count_exists; first by destruct ts.
          {
            intros cpu x1 x2 SCHED1 SCHED2.
            unfold task_scheduled_on in ×.
            destruct (sched cpu t); last by done.
            move: SCHED1 SCHED2 ⇒ /eqP SCHED1 /eqP SCHED2.
            by rewrite -SCHED1 -SCHED2.
          }
        }
        {
          rewrite -(WORK j t) // -count_predT.
          apply leq_trans with (n := count (fun jscheduled_task_other_than tsk (job_task j)) (jobs_scheduled_at sched t));
            last first.
          {
            rewrite -count_map.
            apply count_sub_uniqr; last first.
            {
              movetsk' /mapP [j' INj' JOBtsk']; subst; apply FROMTS.
              by rewrite mem_scheduled_jobs_eq_scheduled in INj'; eauto 2.
            }
            rewrite map_inj_in_uniq; first by apply scheduled_jobs_uniq.
            red; intros j1 j2 SCHED1 SCHED2 SAMEtsk.
            rewrite 2!mem_scheduled_jobs_eq_scheduled in SCHED1 SCHED2.
            have ARRin1: arrives_in arr_seq j1 by apply (FROMarr j1 t).
              have ARRin2: arrives_in arr_seq j2 by apply (FROMarr j2 t).
              by apply UNIQ; try (by done); apply scheduled_implies_pending.
          }
          {
            apply sub_in_count; intros j' SCHED' _.
            rewrite mem_scheduled_jobs_eq_scheduled in SCHED'.
            unfold scheduled_task_other_than; apply/andP; split.
            {
              move: SCHED' ⇒ /existsP [cpu /eqP SCHED'].
              by apply/existsP; cpu; rewrite /task_scheduled_on SCHED' eq_refl.
            }
            {
              apply/eqP; red; intro SAMEtsk; symmetry in SAMEtsk.
              move: BACK ⇒ /andP [PENDING NOTSCHED].
              have ARRin': arrives_in arr_seq j' by apply (FROMarr j' t).
              exploit (UNIQ j j'); try (by done);
                [by apply scheduled_implies_pending | by rewrite -SAMEtsk |].
              by intro EQjob; subst; rewrite SCHED' in NOTSCHED.
            }
          }
        }
      Qed.

    End NoMultipleJobs.

    (* In this section we also prove the absence of multiple jobs of the same
       task when constrained deadlines are assumed, but in the specific case
       of fixed-priority scheduling.  *)

    Section NoMultipleJobsFP.

      (* Assume any work-conserving priority-based scheduler. *)
      Variable higher_eq_priority: FP_policy sporadic_task.
      Hypothesis H_work_conserving: work_conserving job_arrival job_cost arr_seq sched.
      Hypothesis H_respects_JLDP_policy:
        respects_FP_policy job_arrival job_cost job_task arr_seq sched higher_eq_priority.

      (* Consider any task set ts. *)
      Variable ts: taskset_of sporadic_task.

      (* Assume that all jobs come from the taskset. *)
      Hypothesis H_all_jobs_from_taskset:
         j,
          arrives_in arr_seq j job_task j \in ts.

      (* Suppose that jobs are sequential, ...*)
      Hypothesis H_sequential_jobs: sequential_jobs sched.
      (* ... jobs must arrive to execute, ... *)
      Hypothesis H_completed_jobs_dont_execute:
        completed_jobs_dont_execute job_cost sched.
      (* ... and jobs do not execute after completion. *)
      Hypothesis H_jobs_must_arrive_to_execute:
        jobs_must_arrive_to_execute job_arrival sched.

      (* Assume that jobs arrive sporadically. *)
      Hypothesis H_sporadic_tasks:
        sporadic_task_model task_period job_arrival job_task arr_seq.

      (* Consider a valid task tsk, ...*)
      Variable tsk: sporadic_task.
      Hypothesis H_valid_task: is_valid_sporadic_task task_cost task_period task_deadline tsk.

      (*... whose job j ... *)
      Variable j: Job.
      Hypothesis H_j_arrives: arrives_in arr_seq j.
      Variable H_job_of_tsk: job_task j = tsk.

      (*... is backlogged at time t <= job_arrival j + task_period tsk. *)
      Variable t: time.
      Hypothesis H_j_backlogged: backlogged job_arrival job_cost sched j t.
      Hypothesis H_t_before_period: t < job_arrival j + task_period tsk.

      (* Recall the definition of a higher-priority task (with respect to tsk). *)
      Let is_hp_task := higher_priority_task higher_eq_priority tsk.

      (* Assume that any jobs of higher-priority tasks complete by their period. *)
      Hypothesis H_all_previous_jobs_completed :
         j_other tsk_other,
          arrives_in arr_seq j_other
          job_task j_other = tsk_other
          is_hp_task tsk_other
          completed job_cost sched j_other (job_arrival j_other + task_period tsk_other).

      (* Assume that any jobs of tsk prior to j complete by their period. *)
      Hypothesis H_all_previous_jobs_of_tsk_completed :
         j0,
          arrives_in arr_seq j0
          job_task j0 = tsk
          job_arrival j0 < job_arrival j
          completed job_cost sched j0 (job_arrival j0 + task_period tsk).

      Definition scheduled_task_with_higher_eq_priority (tsk tsk_other: sporadic_task) :=
        task_is_scheduled job_task sched tsk_other t &&
        is_hp_task tsk_other.

      (* Then, there can be at most one pending job of higher-priority tasks at time t. *)
      Lemma platform_fp_no_multiple_jobs_of_interfering_tasks :
         j1 j2,
          arrives_in arr_seq j1
          arrives_in arr_seq j2
          pending job_arrival job_cost sched j1 t
          pending job_arrival job_cost sched j2 t
          job_task j1 = job_task j2
          is_hp_task (job_task j1)
          j1 = j2.
      Proof.
        unfold sporadic_task_model in ×.
        rename H_sporadic_tasks into SPO, H_all_previous_jobs_of_tsk_completed into PREVtsk,
               H_all_previous_jobs_completed into PREV.
        intros j1 j2 ARR1 ARR2 PENDING1 PENDING2 SAMEtsk INTERF.
        apply/eqP; rewrite -[_ == _]negbK; apply/negP; red; move ⇒ /eqP DIFF.
        move: PENDING1 PENDING2 ⇒ /andP [ARRIVED1 /negP NOTCOMP1] /andP [ARRIVED2 /negP NOTCOMP2].
        destruct (leqP (job_arrival j1) (job_arrival j2)) as [BEFORE1 | BEFORE2].
        {
          specialize (SPO j1 j2 DIFF ARR1 ARR2 SAMEtsk BEFORE1).
          exploit (PREV j1 (job_task j1) ARR1); [by done | by apply INTERF | intros COMP1].
          apply NOTCOMP1.
          ( try ( apply completion_monotonic with (t0 := job_arrival j1 + task_period (job_task j1)) ) ||
          apply completion_monotonic with (t := job_arrival j1 + task_period (job_task j1)));
            try (by done).
          by apply leq_trans with (n := job_arrival j2).
        }
        {
          apply ltnW in BEFORE2.
          exploit (SPO j2 j1); try (by done); [by red; ins; subst j2 | intro SPO'].
          exploit (PREV j2 (job_task j2) ARR2);
            [by done | by rewrite -SAMEtsk | intro COMP2 ].
          apply NOTCOMP2.
          ( try ( apply completion_monotonic with (t0 := job_arrival j2 + task_period (job_task j2)) ) ||
          apply completion_monotonic with (t := job_arrival j2 + task_period (job_task j2)));
            try (by done).
          by apply leq_trans with (n := job_arrival j1).
        }
      Qed.

      (* Also, there can be at most one pending job of tsk at time t. *)
      Lemma platform_fp_no_multiple_jobs_of_tsk :
         j',
          arrives_in arr_seq j'
          pending job_arrival job_cost sched j' t
          job_task j' = tsk
          j' = j.
      Proof.
        unfold sporadic_task_model in ×.
        rename H_sporadic_tasks into SPO,
               H_valid_task into PARAMS,
               H_all_previous_jobs_of_tsk_completed into PREVtsk,
               H_all_previous_jobs_completed into PREV,
               H_j_backlogged into BACK, H_job_of_tsk into JOBtsk.
        intros j' ARR' PENDING' SAMEtsk.
        apply/eqP; rewrite -[_ == _]negbK; apply/negP; red; move ⇒ /eqP DIFF.
        move: BACK PENDING' ⇒ /andP [/andP [ARRIVED /negP NOTCOMP] NOTSCHED]
                               /andP [ARRIVED' /negP NOTCOMP'].
        destruct (leqP (job_arrival j') (job_arrival j)) as [BEFORE | BEFORE'].
        {
          exploit (SPO j' j DIFF ARR' H_j_arrives); [by rewrite JOBtsk | by done | intro SPO'].
          apply NOTCOMP'.
          ( try ( apply completion_monotonic with (t0 := job_arrival j' + task_period tsk) ) ||
          apply completion_monotonic with (t := job_arrival j' + task_period tsk)); try (by done);
            first by apply leq_trans with (n := job_arrival j); [by rewrite -SAMEtsk | by done].
          {
            apply PREVtsk; try (by done).
            apply leq_trans with (n := job_arrival j' + task_period tsk); last by rewrite -SAMEtsk.
            rewrite -addn1; apply leq_add; first by done.
            by unfold is_valid_sporadic_task in *; des.
          }
        }
        {
          unfold has_arrived in ×.
          rewrite leqNgt in ARRIVED'; move: ARRIVED' ⇒ /negP BUG; apply BUG.
          apply leq_trans with (n := job_arrival j + task_period tsk); first by done.
          by rewrite -JOBtsk; apply SPO; try (by done);
            [by red; ins; subst j' | by rewrite SAMEtsk | by apply ltnW].
        }
      Qed.

      (* Therefore, all processors are busy with tasks other than tsk. *)
      Lemma platform_fp_cpus_busy_with_interfering_tasks :
        count (scheduled_task_with_higher_eq_priority tsk) ts = num_cpus.
      Proof.
        have UNIQ := platform_fp_no_multiple_jobs_of_interfering_tasks.
        have UNIQ' := platform_fp_no_multiple_jobs_of_tsk.
        rename H_all_jobs_from_taskset into FROMTS, H_sequential_jobs into SEQUENTIAL,
               H_work_conserving into WORK, H_respects_JLDP_policy into PRIO,
               H_j_backlogged into BACK, H_job_of_tsk into JOBtsk,
               H_sporadic_tasks into SPO, H_valid_job_parameters into JOBPARAMS,
               H_valid_task into TASKPARAMS, H_all_previous_jobs_completed into PREV,
               H_completed_jobs_dont_execute into COMP, H_jobs_come_from_arrival_sequence into FROMarr,
               H_all_previous_jobs_of_tsk_completed into PREVtsk,
               H_jobs_must_arrive_to_execute into ARRIVE.
        apply work_conserving_eq_work_conserving_count in WORK.
        unfold valid_sporadic_job, valid_realtime_job,
               respects_FP_policy, respects_JLDP_policy, FP_to_JLDP,
               completed_jobs_dont_execute, sequential_jobs,
               sporadic_task_model, is_valid_sporadic_task,
               jobs_of_same_task_dont_execute_in_parallel,
               is_hp_task in ×.
        apply/eqP; rewrite eqn_leq; apply/andP; split.
        {
          apply leq_trans with (n := count (fun xtask_is_scheduled job_task sched x t) ts);
            first by apply sub_count; red; movex /andP [SCHED _].
          unfold task_is_scheduled.
          apply count_exists; first by destruct ts.
          {
            intros cpu x1 x2 SCHED1 SCHED2.
            unfold task_scheduled_on in ×.
            destruct (sched cpu t); last by done.
            move: SCHED1 SCHED2 ⇒ /eqP SCHED1 /eqP SCHED2.
            by rewrite -SCHED1 -SCHED2.
          }
        }
        {
          rewrite -(WORK j t) // -count_predT.
          apply leq_trans with (n := count (fun j
            scheduled_task_with_higher_eq_priority tsk (job_task j)) (jobs_scheduled_at sched t));
            last first.
          {
            rewrite -count_map.
            apply leq_trans with (n := count predT [seq x <- (map (fun jjob_task j) (jobs_scheduled_at sched t)) | scheduled_task_with_higher_eq_priority tsk x]);
              first by rewrite count_filter; apply sub_count; red; ins.
            apply leq_trans with (n := count predT [seq x <- ts | scheduled_task_with_higher_eq_priority tsk x]);
              last by rewrite count_predT size_filter.
            apply count_sub_uniqr; last first.
            {
              red; intros tsk' IN'.
              rewrite mem_filter in IN'; move: IN' ⇒ /andP [SCHED IN'].
              rewrite mem_filter; apply/andP; split; first by done.
              move: IN' ⇒ /mapP [j' IN'] ->; apply FROMTS.
              by rewrite mem_scheduled_jobs_eq_scheduled in IN'; eauto 2.
            }
            {
              rewrite filter_map.
              rewrite map_inj_in_uniq; first by apply filter_uniq, scheduled_jobs_uniq.
              red; intros j1 j2 SCHED1 SCHED2 SAMEtsk.
              rewrite 2!mem_filter in SCHED1 SCHED2.
              move: SCHED1 SCHED2 ⇒ /andP [/andP [_ HP1] SCHED1] /andP [/andP [_ HP2] SCHED2].
              rewrite 2!mem_scheduled_jobs_eq_scheduled in SCHED1 SCHED2.
              have ARRin1: arrives_in arr_seq j1 by apply (FROMarr j1 t).
              have ARRIn2: arrives_in arr_seq j2 by apply (FROMarr j2 t).
              by apply UNIQ; try (by done); apply scheduled_implies_pending.
            }
          }
          {
            apply sub_in_count; intros j' SCHED' _.
            rewrite mem_scheduled_jobs_eq_scheduled in SCHED'.
            apply/andP; split.
            {
              move: SCHED' ⇒ /existsP [cpu /eqP SCHED'].
              by apply/existsP; cpu; rewrite /task_scheduled_on SCHED' eq_refl.
            }
            apply/andP; split; first by rewrite -JOBtsk; apply PRIO with (t := t).
            {
              apply/eqP; red; intro SAMEtsk.
              generalize SCHED'; intro PENDING'.
              have ARRin': arrives_in arr_seq j' by apply (FROMarr j' t).
              ( try ( apply scheduled_implies_pending with (job_arrival0 := job_arrival)
                (job_cost0 := job_cost) in PENDING' ) ||
              apply scheduled_implies_pending with (job_arrival := job_arrival)
                (job_cost := job_cost) in PENDING'); try (by done).
              specialize (UNIQ' j' ARRin' PENDING' SAMEtsk); subst j'.
              by move: BACK ⇒ /andP [_ NOTSCHED]; rewrite SCHED' in NOTSCHED.
            }
          }
        }
      Qed.

    End NoMultipleJobsFP.

  End Lemmas.

End ConstrainedDeadlines.