Library prosa.util.bigcat
Require Export mathcomp.zify.zify.
Require Export prosa.util.tactics prosa.util.notation.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
Require Export prosa.util.tactics prosa.util.list.
Require Export prosa.util.tactics prosa.util.notation.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
Require Export prosa.util.tactics prosa.util.list.
In this section, we introduce lemmas about the concatenation
operation performed over arbitrary sequences.
Consider any type T supporting equality comparisons...
...and a function f that, given an index, yields a sequence.
In this section, we prove that the concatenation over sequences works as expected:
no element is lost during the concatenation, and no new element is introduced.
First, we show that the concatenation comprises all the elements of each sequence;
i.e. any element contained in one of the sequences will also be an element of the
result of the concatenation.
Lemma mem_bigcat_nat :
∀ x m n j,
m ≤ j < n →
x \in f j →
x \in \cat_(m ≤ i < n) (f i).
Proof.
intros x m n j LE IN; move: LE ⇒ /andP [LE LE0].
rewrite → big_cat_nat with (n := j); simpl; [| by ins | by apply ltnW].
rewrite mem_cat; apply/orP; right.
destruct n; first by rewrite ltn0 in LE0.
rewrite big_nat_recl; last by ins.
by rewrite mem_cat; apply/orP; left.
Qed.
∀ x m n j,
m ≤ j < n →
x \in f j →
x \in \cat_(m ≤ i < n) (f i).
Proof.
intros x m n j LE IN; move: LE ⇒ /andP [LE LE0].
rewrite → big_cat_nat with (n := j); simpl; [| by ins | by apply ltnW].
rewrite mem_cat; apply/orP; right.
destruct n; first by rewrite ltn0 in LE0.
rewrite big_nat_recl; last by ins.
by rewrite mem_cat; apply/orP; left.
Qed.
Conversely, we prove that any element belonging to a concatenation of sequences
must come from one of the sequences.
Lemma mem_bigcat_nat_exists :
∀ x m n,
x \in \cat_(m ≤ i < n) (f i) →
∃ i,
x \in f i ∧ m ≤ i < n.
Proof.
intros x m n IN.
induction n; first by rewrite big_geq // in IN.
destruct (leqP m n); last by rewrite big_geq ?in_nil // ltnW in IN.
rewrite big_nat_recr // /= mem_cat in IN.
move: IN ⇒ /orP [HEAD | TAIL].
- apply IHn in HEAD; destruct HEAD; ∃ x0.
move: H ⇒ [H /andP [H0 H1]].
split; first by done.
by apply/andP; split; last by apply ltnW.
- ∃ n; split; first by done.
by apply/andP; split; last apply ltnSn.
Qed.
∀ x m n,
x \in \cat_(m ≤ i < n) (f i) →
∃ i,
x \in f i ∧ m ≤ i < n.
Proof.
intros x m n IN.
induction n; first by rewrite big_geq // in IN.
destruct (leqP m n); last by rewrite big_geq ?in_nil // ltnW in IN.
rewrite big_nat_recr // /= mem_cat in IN.
move: IN ⇒ /orP [HEAD | TAIL].
- apply IHn in HEAD; destruct HEAD; ∃ x0.
move: H ⇒ [H /andP [H0 H1]].
split; first by done.
by apply/andP; split; last by apply ltnW.
- ∃ n; split; first by done.
by apply/andP; split; last apply ltnSn.
Qed.
We also restate lemma mem_bigcat_nat in terms of ordinals.
Lemma mem_bigcat_ord :
∀ (x : T) (n : nat) (j : 'I_n) (f : 'I_n → seq T),
j < n →
x \in (f j) →
x \in \cat_(i < n) (f i).
Proof.
move⇒ x; elim⇒ [//|n IHn] j f' Hj Hx.
rewrite big_ord_recr /= mem_cat; apply /orP.
move: Hj; rewrite ltnS leq_eqVlt ⇒ /orP [/eqP Hj|Hj].
- by right; rewrite (_ : ord_max = j); [|apply ord_inj].
- left.
apply (IHn (Ordinal Hj)); [by []|].
by set j' := widen_ord _ _; have → : j' = j; [apply ord_inj|].
Qed.
End BigCatNatElements.
∀ (x : T) (n : nat) (j : 'I_n) (f : 'I_n → seq T),
j < n →
x \in (f j) →
x \in \cat_(i < n) (f i).
Proof.
move⇒ x; elim⇒ [//|n IHn] j f' Hj Hx.
rewrite big_ord_recr /= mem_cat; apply /orP.
move: Hj; rewrite ltnS leq_eqVlt ⇒ /orP [/eqP Hj|Hj].
- by right; rewrite (_ : ord_max = j); [|apply ord_inj].
- left.
apply (IHn (Ordinal Hj)); [by []|].
by set j' := widen_ord _ _; have → : j' = j; [apply ord_inj|].
Qed.
End BigCatNatElements.
In this section, we show how we can preserve uniqueness of the elements
(i.e. the absence of a duplicate) over a concatenation of sequences.
Assume that there are no duplicates in each of the possible
sequences to concatenate...
...and that there are no elements in common between the sequences.
We prove that the concatenation will yield a sequence with unique elements.
Lemma bigcat_nat_uniq :
∀ n1 n2,
uniq (\cat_(n1 ≤ i < n2) (f i)).
Proof.
intros n1 n2.
case (leqP n1 n2) ⇒ [LE | GT]; last by rewrite big_geq // ltnW.
rewrite -[n2](addKn n1).
rewrite -addnBA //; set delta := n2 - n1.
induction delta; first by rewrite addn0 big_geq.
rewrite addnS big_nat_recr /=; last by apply leq_addr.
rewrite cat_uniq; apply/andP; split; first by apply IHdelta.
apply /andP; split; last by apply H_uniq_seq.
rewrite -all_predC; apply/allP; intros x INx.
simpl; apply/negP; unfold not; intro BUG.
apply mem_bigcat_nat_exists in BUG.
move: BUG ⇒ [i [IN /andP [_ LTi]]].
apply H_no_elements_in_common with (i1 := i) in INx; last by done.
by rewrite INx ltnn in LTi.
Qed.
∀ n1 n2,
uniq (\cat_(n1 ≤ i < n2) (f i)).
Proof.
intros n1 n2.
case (leqP n1 n2) ⇒ [LE | GT]; last by rewrite big_geq // ltnW.
rewrite -[n2](addKn n1).
rewrite -addnBA //; set delta := n2 - n1.
induction delta; first by rewrite addn0 big_geq.
rewrite addnS big_nat_recr /=; last by apply leq_addr.
rewrite cat_uniq; apply/andP; split; first by apply IHdelta.
apply /andP; split; last by apply H_uniq_seq.
rewrite -all_predC; apply/allP; intros x INx.
simpl; apply/negP; unfold not; intro BUG.
apply mem_bigcat_nat_exists in BUG.
move: BUG ⇒ [i [IN /andP [_ LTi]]].
apply H_no_elements_in_common with (i1 := i) in INx; last by done.
by rewrite INx ltnn in LTi.
Qed.
Conversely, if the concatenation of the sequences has no duplicates, any
element can only belong to a single sequence.
Lemma bigcat_ord_uniq_reverse :
∀ (n : nat) (f : 'I_n → seq T),
uniq (\cat_(i < n) (f i)) →
(∀ x i1 i2,
x \in (f i1) → x \in (f i2) → i1 = i2).
Proof.
case⇒ [|n]; [by move⇒ f' Huniq x; case|].
elim: n ⇒ [|n IHn] f' Huniq x i1 i2 Hi1 Hi2.
{ move: i1 i2 {Hi1 Hi2}; case; case⇒ [i1|//]; case; case⇒ [i2|//].
apply f_equal, eq_irrelevance. }
move: (leq_ord i1); rewrite leq_eqVlt ⇒ /orP [H'i1|H'i1].
all: move: (leq_ord i2); rewrite leq_eqVlt ⇒ /orP [H'i2|H'i2].
{ by apply ord_inj; move: H'i1 H'i2 ⇒ /eqP → /eqP →. }
{ exfalso.
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [_ /andP [H _]].
move: H; apply /negP; rewrite Bool.negb_involutive.
apply /hasP; ∃ x ⇒ /=.
{ set o := ord_max; suff → : o = i1; [by []|].
by apply ord_inj; move: H'i1 ⇒ /eqP →. }
apply (mem_bigcat_ord _ _ (Ordinal H'i2)) ⇒ //.
by set o := widen_ord _ _; suff → : o = i2; [|apply ord_inj]. }
{ exfalso.
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [_ /andP [H _]].
move: H; apply /negP; rewrite Bool.negb_involutive.
apply /hasP; ∃ x ⇒ /=.
{ set o := ord_max; suff → : o = i2; [by []|].
by apply ord_inj; move: H'i2 ⇒ /eqP →. }
apply (mem_bigcat_ord _ _ (Ordinal H'i1)) ⇒ //.
by set o := widen_ord _ _; suff → : o = i1; [|apply ord_inj]. }
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [Huniq _].
apply ord_inj; rewrite -(inordK H'i1) -(inordK H'i2); apply f_equal.
apply (IHn _ Huniq x).
{ set i1' := widen_ord _ _; suff → : i1' = i1; [by []|].
by apply ord_inj; rewrite /= inordK. }
set i2' := widen_ord _ _; suff → : i2' = i2; [by []|].
by apply ord_inj; rewrite /= inordK.
Qed.
End BigCatNatDistinctElements.
∀ (n : nat) (f : 'I_n → seq T),
uniq (\cat_(i < n) (f i)) →
(∀ x i1 i2,
x \in (f i1) → x \in (f i2) → i1 = i2).
Proof.
case⇒ [|n]; [by move⇒ f' Huniq x; case|].
elim: n ⇒ [|n IHn] f' Huniq x i1 i2 Hi1 Hi2.
{ move: i1 i2 {Hi1 Hi2}; case; case⇒ [i1|//]; case; case⇒ [i2|//].
apply f_equal, eq_irrelevance. }
move: (leq_ord i1); rewrite leq_eqVlt ⇒ /orP [H'i1|H'i1].
all: move: (leq_ord i2); rewrite leq_eqVlt ⇒ /orP [H'i2|H'i2].
{ by apply ord_inj; move: H'i1 H'i2 ⇒ /eqP → /eqP →. }
{ exfalso.
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [_ /andP [H _]].
move: H; apply /negP; rewrite Bool.negb_involutive.
apply /hasP; ∃ x ⇒ /=.
{ set o := ord_max; suff → : o = i1; [by []|].
by apply ord_inj; move: H'i1 ⇒ /eqP →. }
apply (mem_bigcat_ord _ _ (Ordinal H'i2)) ⇒ //.
by set o := widen_ord _ _; suff → : o = i2; [|apply ord_inj]. }
{ exfalso.
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [_ /andP [H _]].
move: H; apply /negP; rewrite Bool.negb_involutive.
apply /hasP; ∃ x ⇒ /=.
{ set o := ord_max; suff → : o = i2; [by []|].
by apply ord_inj; move: H'i2 ⇒ /eqP →. }
apply (mem_bigcat_ord _ _ (Ordinal H'i1)) ⇒ //.
by set o := widen_ord _ _; suff → : o = i1; [|apply ord_inj]. }
move: Huniq; rewrite big_ord_recr cat_uniq ⇒ /andP [Huniq _].
apply ord_inj; rewrite -(inordK H'i1) -(inordK H'i2); apply f_equal.
apply (IHn _ Huniq x).
{ set i1' := widen_ord _ _; suff → : i1' = i1; [by []|].
by apply ord_inj; rewrite /= inordK. }
set i2' := widen_ord _ _; suff → : i2' = i2; [by []|].
by apply ord_inj; rewrite /= inordK.
Qed.
End BigCatNatDistinctElements.
We show that filtering a concatenated sequence by any predicate
P is the same as concatenating the elements of the sequence
that satisfy P.
Lemma bigcat_nat_filter_eq_filter_bigcat_nat :
∀ {X : Type} (F : nat → seq X) (P : X → bool) (t1 t2 : nat),
[seq x <- \cat_(t1 ≤ t < t2) F t | P x] = \cat_(t1 ≤ t < t2)[seq x <- F t | P x].
Proof.
intros.
specialize (leq_total t1 t2) ⇒ /orP [T1_LT | T2_LT].
+ have EX: ∃ Δ, t2 = t1 + Δ by simpl; ∃ (t2 - t1); lia.
move: EX ⇒ [Δ EQ]; subst t2.
induction Δ.
{ by rewrite addn0 !big_geq ⇒ //. }
{ rewrite addnS !big_nat_recr ⇒ //=; try by rewrite leq_addr.
rewrite filter_cat IHΔ ⇒ //.
by lia. }
+ by rewrite !big_geq ⇒ //.
Qed.
∀ {X : Type} (F : nat → seq X) (P : X → bool) (t1 t2 : nat),
[seq x <- \cat_(t1 ≤ t < t2) F t | P x] = \cat_(t1 ≤ t < t2)[seq x <- F t | P x].
Proof.
intros.
specialize (leq_total t1 t2) ⇒ /orP [T1_LT | T2_LT].
+ have EX: ∃ Δ, t2 = t1 + Δ by simpl; ∃ (t2 - t1); lia.
move: EX ⇒ [Δ EQ]; subst t2.
induction Δ.
{ by rewrite addn0 !big_geq ⇒ //. }
{ rewrite addnS !big_nat_recr ⇒ //=; try by rewrite leq_addr.
rewrite filter_cat IHΔ ⇒ //.
by lia. }
+ by rewrite !big_geq ⇒ //.
Qed.
We show that the size of a concatenated sequence is the same as
summation of sizes of each element of the sequence.
Lemma size_big_nat :
∀ {X : Type} (F : nat → seq X) (t1 t2 : nat),
\sum_(t1 ≤ t < t2) size (F t) =
size (\cat_(t1 ≤ t < t2) F t).
Proof.
intros.
specialize (leq_total t1 t2) ⇒ /orP [T1_LT | T2_LT].
- have EX: ∃ Δ, t2 = t1 + Δ by simpl; ∃ (t2 - t1); lia.
move: EX ⇒ [Δ EQ]; subst t2.
induction Δ.
{ by rewrite addn0 !big_geq ⇒ //. }
{ rewrite addnS !big_nat_recr ⇒ //=; try by rewrite leq_addr.
by rewrite size_cat IHΔ ⇒ //; lia. }
- by rewrite !big_geq ⇒ //.
Qed.
End BigCatNatLemmas.
∀ {X : Type} (F : nat → seq X) (t1 t2 : nat),
\sum_(t1 ≤ t < t2) size (F t) =
size (\cat_(t1 ≤ t < t2) F t).
Proof.
intros.
specialize (leq_total t1 t2) ⇒ /orP [T1_LT | T2_LT].
- have EX: ∃ Δ, t2 = t1 + Δ by simpl; ∃ (t2 - t1); lia.
move: EX ⇒ [Δ EQ]; subst t2.
induction Δ.
{ by rewrite addn0 !big_geq ⇒ //. }
{ rewrite addnS !big_nat_recr ⇒ //=; try by rewrite leq_addr.
by rewrite size_cat IHΔ ⇒ //; lia. }
- by rewrite !big_geq ⇒ //.
Qed.
End BigCatNatLemmas.
In this section, we introduce a few lemmas about the concatenation
operation performed over arbitrary sequences.
First, we show that the concatenation comprises all the elements of each sequence;
i.e. any element contained in one of the sequences will also be an element of the
result of the concatenation.
Lemma mem_bigcat :
∀ x y s,
x \in s →
y \in f x →
y \in \cat_(x <- s) f x.
Proof.
move⇒ x y s INs INfx.
induction s; first by done.
rewrite big_cons mem_cat.
move:INs; rewrite in_cons ⇒ /orP[/eqP HEAD | CONS].
- by rewrite -HEAD; apply /orP; left.
- by apply /orP; right; apply IHs.
Qed.
∀ x y s,
x \in s →
y \in f x →
y \in \cat_(x <- s) f x.
Proof.
move⇒ x y s INs INfx.
induction s; first by done.
rewrite big_cons mem_cat.
move:INs; rewrite in_cons ⇒ /orP[/eqP HEAD | CONS].
- by rewrite -HEAD; apply /orP; left.
- by apply /orP; right; apply IHs.
Qed.
Conversely, we prove that any element belonging to a concatenation of sequences
must come from one of the sequences.
Lemma mem_bigcat_exists :
∀ s y,
y \in \cat_(x <- s) f x →
∃ x, x \in s ∧ y \in f x.
Proof.
induction s; first by rewrite big_nil.
move⇒ y.
rewrite big_cons mem_cat ⇒ /orP[HEAD | CONS].
- ∃ a.
by split ⇒ //; apply mem_head.
- move: (IHs _ CONS) ⇒ [x [INs INfx]].
∃ x; split =>//.
by rewrite in_cons; apply /orP; right.
Qed.
∀ s y,
y \in \cat_(x <- s) f x →
∃ x, x \in s ∧ y \in f x.
Proof.
induction s; first by rewrite big_nil.
move⇒ y.
rewrite big_cons mem_cat ⇒ /orP[HEAD | CONS].
- ∃ a.
by split ⇒ //; apply mem_head.
- move: (IHs _ CONS) ⇒ [x [INs INfx]].
∃ x; split =>//.
by rewrite in_cons; apply /orP; right.
Qed.
Next, we show that a map and filter operation can be done either
before or after a concatenation, leading to the same result.
Lemma bigcat_filter_eq_filter_bigcat :
∀ xss P,
[seq x <- \cat_(xs <- xss) f xs | P x] =
\cat_(xs <- xss) [seq x <- f xs | P x] .
Proof.
move⇒ xss P.
induction xss.
- by rewrite !big_nil.
- by rewrite !big_cons filter_cat IHxss.
Qed.
∀ xss P,
[seq x <- \cat_(xs <- xss) f xs | P x] =
\cat_(xs <- xss) [seq x <- f xs | P x] .
Proof.
move⇒ xss P.
induction xss.
- by rewrite !big_nil.
- by rewrite !big_cons filter_cat IHxss.
Qed.
In this section, we show how we can preserve uniqueness of the elements
(i.e. the absence of a duplicate) over a concatenation of sequences.
Assume that there are no duplicates in each of the possible
sequences to concatenate...
...and that there are no elements in common between the sequences.
We prove that the concatenation will yield a sequence with unique elements.
Lemma bigcat_uniq :
∀ xs,
uniq xs →
uniq (\cat_(x <- xs) (f x)).
Proof.
induction xs; first by rewrite big_nil.
rewrite cons_uniq ⇒ /andP [NINxs UNIQ].
rewrite big_cons cat_uniq.
apply /andP; split; first by apply H_uniq_f.
apply /andP; split; last by apply IHxs.
apply /hasPn⇒ x IN; apply /negP⇒ INfa.
move: (mem_bigcat_exists _ _ IN) ⇒ [a' [INxs INfa']].
move: (H_no_elements_in_common x a a' INfa INfa') ⇒ EQa.
by move: NINxs; rewrite EQa ⇒ /negP CONTRA.
Qed.
End BigCatDistinctElements.
∀ xs,
uniq xs →
uniq (\cat_(x <- xs) (f x)).
Proof.
induction xs; first by rewrite big_nil.
rewrite cons_uniq ⇒ /andP [NINxs UNIQ].
rewrite big_cons cat_uniq.
apply /andP; split; first by apply H_uniq_f.
apply /andP; split; last by apply IHxs.
apply /hasPn⇒ x IN; apply /negP⇒ INfa.
move: (mem_bigcat_exists _ _ IN) ⇒ [a' [INxs INfa']].
move: (H_no_elements_in_common x a a' INfa INfa') ⇒ EQa.
by move: NINxs; rewrite EQa ⇒ /negP CONTRA.
Qed.
End BigCatDistinctElements.
In this section, we show some properties of the concatenation of
sequences in combination with a function g that cancels f.
Consider a function g...
First, we show that no element of a sequence f x1 can be fed into
g and obtain an element x2 which differs from x1. Hence, filtering
by this condition always leads to the empty sequence.
Lemma seq_different_elements_nil :
∀ x1 x2,
x1 != x2 →
[seq x <- f x1 | g x == x2] = [::].
Proof.
move ⇒ x1 x2 ⇒ /negP NEQ.
apply filter_in_pred0.
move ⇒ y IN; apply/negP ⇒ /eqP EQ2.
apply: NEQ; apply/eqP.
move: (H_g_cancels_f _ _ IN) ⇒ EQ1.
by rewrite -EQ1 -EQ2.
Qed.
∀ x1 x2,
x1 != x2 →
[seq x <- f x1 | g x == x2] = [::].
Proof.
move ⇒ x1 x2 ⇒ /negP NEQ.
apply filter_in_pred0.
move ⇒ y IN; apply/negP ⇒ /eqP EQ2.
apply: NEQ; apply/eqP.
move: (H_g_cancels_f _ _ IN) ⇒ EQ1.
by rewrite -EQ1 -EQ2.
Qed.
Finally, assume we are given an element y which is contained in a
duplicate-free sequence xs. Then, f is applied to each element of
xs, but only the elements for which g yields y are kept. In this
scenario, concatenating the resulting sequences will always lead to f y.
Lemma bigcat_seq_uniqK :
∀ y xs,
y \in xs →
uniq xs →
\cat_(x <- xs) [seq x' <- f x | g x' == y] = f y.
Proof.
move⇒ y xs IN UNI.
induction xs as [ | x' xs]; first by done.
move: IN; rewrite in_cons ⇒ /orP [/eqP EQ| IN].
{ subst; rewrite !big_cons.
have → : [seq x <- f x' | g x == x'] = f x'.
{ apply/all_filterP/allP.
intros y IN; apply/eqP.
by apply H_g_cancels_f. }
have ->: \cat_(j<-xs)[seq x <- f j | g x == x'] = [::]; last by rewrite cats0.
rewrite big1_seq //; move ⇒ xs2 /andP [_ IN].
have NEQ: xs2 != x'; last by rewrite seq_different_elements_nil.
apply/neqP; intros EQ; subst x'.
move: UNI; rewrite cons_uniq ⇒ /andP [NIN _].
by move: NIN ⇒ /negP NIN; apply: NIN. }
{ rewrite big_cons IHxs //; last by move:UNI; rewrite cons_uniq⇒ /andP[_ ?].
have NEQ: (x' != y); last by rewrite seq_different_elements_nil.
apply/neqP; intros EQ; subst x'.
move: UNI; rewrite cons_uniq ⇒ /andP [NIN _].
by move: NIN ⇒ /negP NIN; apply: NIN. }
Qed.
End BigCatWithCancelFunctions.
End BigCatLemmas.
∀ y xs,
y \in xs →
uniq xs →
\cat_(x <- xs) [seq x' <- f x | g x' == y] = f y.
Proof.
move⇒ y xs IN UNI.
induction xs as [ | x' xs]; first by done.
move: IN; rewrite in_cons ⇒ /orP [/eqP EQ| IN].
{ subst; rewrite !big_cons.
have → : [seq x <- f x' | g x == x'] = f x'.
{ apply/all_filterP/allP.
intros y IN; apply/eqP.
by apply H_g_cancels_f. }
have ->: \cat_(j<-xs)[seq x <- f j | g x == x'] = [::]; last by rewrite cats0.
rewrite big1_seq //; move ⇒ xs2 /andP [_ IN].
have NEQ: xs2 != x'; last by rewrite seq_different_elements_nil.
apply/neqP; intros EQ; subst x'.
move: UNI; rewrite cons_uniq ⇒ /andP [NIN _].
by move: NIN ⇒ /negP NIN; apply: NIN. }
{ rewrite big_cons IHxs //; last by move:UNI; rewrite cons_uniq⇒ /andP[_ ?].
have NEQ: (x' != y); last by rewrite seq_different_elements_nil.
apply/neqP; intros EQ; subst x'.
move: UNI; rewrite cons_uniq ⇒ /andP [NIN _].
by move: NIN ⇒ /negP NIN; apply: NIN. }
Qed.
End BigCatWithCancelFunctions.
End BigCatLemmas.
In this section, we show that the number of elements of the result
of a nested mapping and concatenation operation is independent from
the order in which the concatenations are performed.
Consider any three types supporting equality comparisons...
... a function F that, given two indices, yields a sequence...
and a predicate P.
Assume that, given two sequences xs and ys, their elements are fed to
F in a pair-wise fashion. The resulting lists are then concatenated.
The following lemma shows that, when the operation described above is performed,
the number of elements respecting P in the resulting list is the same, regardless
of the order in which xs and ys are combined.
Lemma bigcat_count_exchange :
∀ xs ys,
count P (\cat_(x <- xs) \cat_(y <- ys) F x y) =
count P (\cat_(y <- ys) \cat_(x <- xs) F x y).
Proof.
induction xs as [|x0 seqX IHxs]; induction ys as [|y0 seqY IHys]; intros.
{ by rewrite !big_nil. }
{ by rewrite big_cons count_cat -IHys !big_nil. }
{ by rewrite big_cons count_cat IHxs !big_nil. }
{ rewrite !big_cons !count_cat.
apply/eqP; rewrite -!addnA eqn_add2l.
rewrite IHxs -IHys !big_cons !count_cat.
rewrite addnC -!addnA eqn_add2l addnC eqn_add2l.
by rewrite IHxs. }
Qed.
End BigCatNestedCount.
∀ xs ys,
count P (\cat_(x <- xs) \cat_(y <- ys) F x y) =
count P (\cat_(y <- ys) \cat_(x <- xs) F x y).
Proof.
induction xs as [|x0 seqX IHxs]; induction ys as [|y0 seqY IHys]; intros.
{ by rewrite !big_nil. }
{ by rewrite big_cons count_cat -IHys !big_nil. }
{ by rewrite big_cons count_cat IHxs !big_nil. }
{ rewrite !big_cons !count_cat.
apply/eqP; rewrite -!addnA eqn_add2l.
rewrite IHxs -IHys !big_cons !count_cat.
rewrite addnC -!addnA eqn_add2l addnC eqn_add2l.
by rewrite IHxs. }
Qed.
End BigCatNestedCount.