Library prosa.analysis.facts.periodic.arrival_times
Require Export prosa.model.task.arrival.periodic_as_sporadic.
Require Export prosa.analysis.facts.periodic.max_inter_arrival.
Require Export prosa.analysis.facts.model.offset.
Require Export prosa.analysis.facts.periodic.max_inter_arrival.
Require Export prosa.analysis.facts.model.offset.
In this module, we'll prove the known arrival
times of jobs that stem from periodic tasks.
Consider periodic tasks with an offset ...
... and any type of jobs associated with these tasks.
Consider any unique arrival sequence with consistent arrivals ...
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
... and any periodic task tsk with a valid offset and period.
Variable tsk : Task.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_valid_period: valid_period tsk.
Hypothesis H_task_respects_periodic_model: respects_periodic_task_model arr_seq tsk.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_valid_period: valid_period tsk.
Hypothesis H_task_respects_periodic_model: respects_periodic_task_model arr_seq tsk.
We show that the nth job j of task tsk
arrives at the instant task_offset tsk + n × task_period tsk.
Lemma periodic_arrival_times:
∀ n (j : Job),
arrives_in arr_seq j →
job_task j = tsk →
job_index arr_seq j = n →
job_arrival j = task_offset tsk + n × task_period tsk.
∀ n (j : Job),
arrives_in arr_seq j →
job_task j = tsk →
job_index arr_seq j = n →
job_arrival j = task_offset tsk + n × task_period tsk.
We show that for every job j of task tsk there exists a number
n such that j arrives at the instant task_offset tsk + n × task_period tsk.
Lemma job_arrival_times:
∀ j,
arrives_in arr_seq j →
job_task j = tsk →
∃ n, job_arrival j = task_offset tsk + n × task_period tsk.
∀ j,
arrives_in arr_seq j →
job_task j = tsk →
∃ n, job_arrival j = task_offset tsk + n × task_period tsk.
If a job j of task tsk arrives at task_offset tsk + n × task_period tsk
then the job_index of j is equal to n.
Lemma job_arr_index:
∀ n j,
arrives_in arr_seq j →
job_task j = tsk →
job_arrival j = task_offset tsk + n × task_period tsk →
job_index arr_seq j = n.
End PeriodicArrivalTimes.
∀ n j,
arrives_in arr_seq j →
job_task j = tsk →
job_arrival j = task_offset tsk + n × task_period tsk →
job_index arr_seq j = n.
End PeriodicArrivalTimes.