Library prosa.analysis.facts.model.sbf.periodic
Require Export prosa.model.priority.classes.
Require Export prosa.model.processor.supply.
Require Export prosa.model.processor.platform_properties.
Require Export prosa.analysis.definitions.sbf.plain.
Require Export prosa.analysis.definitions.sbf.periodic.
Require Export prosa.model.processor.supply.
Require Export prosa.model.processor.platform_properties.
Require Export prosa.analysis.definitions.sbf.plain.
Require Export prosa.analysis.definitions.sbf.periodic.
SBF for Periodic Resource Model in Valid
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Consider any kind of unit-supply processor state model.
Context {PState : ProcessorState Job}.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Consider a JLFP policy, ...
... any arrival sequence, ...
... and any schedule.
Next, we prove a few properties required by aRSA-based analyses, in
particular that the SBF is valid.
We show that sbf is monotone.
Lemma prm_sbf_monotone : sbf_is_monotone (prm_sbf Π γ).
Proof.
move ⇒ δ1 δ2 LE; rewrite /prm_sbf.
interval_to_duration δ1 δ2 Δ.
have [Z|POS] := posnP Π; first by subst; rewrite divn0 !mul0n !add0n !subn0 leq_addr.
set (A := Π - γ); have ->: 2 × A = A + A by lia.
rewrite !subnDAC.
have [LEA|LEA] := leqP δ1 A.
{ move: LEA; rewrite -subn_eq0 ⇒ /eqP EQ.
by rewrite EQ div0n !mul0n add0n. }
have ->: δ1 + Δ - A = δ1 - A + Δ by lia.
set (δ2 := δ1 - A).
have [k [q [EQ LT1]]] : ∃ k q, Δ = k × Π + q ∧ q < Π.
{ by eexists; eexists; split; [ apply divn_eq | rewrite ltn_mod ]. }
subst Δ; have ->: δ2 + (k × Π + q) =k × Π + (δ2 + q) by lia.
have [h [j [EQ LT2]]] : ∃ k q, δ2 = k × Π + q ∧ q < Π.
{ by eexists; eexists; split; [ apply divn_eq | rewrite ltn_mod ]. }
subst δ2; rewrite !EQ; clear EQ.
rewrite divnDl; last by rewrite dvdn_mull // dvdnn.
rewrite !mulnDl mulnK // subnDA.
rewrite -![_ + j + q]addnA.
rewrite divnDl; last by rewrite dvdn_mull // dvdnn.
rewrite !mulnDl mulnK // subnDA.
replace (j %/ Π) with 0; last by symmetry; apply divn_small.
replace (q %/ Π) with 0; last by symmetry; apply divn_small.
rewrite mul0n addn0 divnDl; last by rewrite dvdn_mull // dvdnn.
rewrite !mulnDl mulnK // subnDA mul0n subn0.
set (s := (j + q) %/ Π).
have F: s ≤ 1.
{ rewrite /s; apply leq_trans with ((Π + q) %/ Π).
{ by apply leq_div2r; lia. }
{ by rewrite divnDl; [rewrite divnn POS divn_small | apply dvdnn]. }
}
rewrite [k×γ + _]addnC -!addnA leq_add2l.
have ->: ∀ a b c, a + b - c - a = b - c by lia.
rewrite !addnA -!mulnDl -!subnDA -!mulnDl !addnA.
have → : (k + h) × Π + j + q - (A + (k + h + s) × Π)
= j + q - (A + s × Π) by lia.
destruct s as [ | [ | ]] ⇒ //; clear F.
{ by rewrite add0n mul0n addn0; lia. }
rewrite /A; lia.
Qed.
Proof.
move ⇒ δ1 δ2 LE; rewrite /prm_sbf.
interval_to_duration δ1 δ2 Δ.
have [Z|POS] := posnP Π; first by subst; rewrite divn0 !mul0n !add0n !subn0 leq_addr.
set (A := Π - γ); have ->: 2 × A = A + A by lia.
rewrite !subnDAC.
have [LEA|LEA] := leqP δ1 A.
{ move: LEA; rewrite -subn_eq0 ⇒ /eqP EQ.
by rewrite EQ div0n !mul0n add0n. }
have ->: δ1 + Δ - A = δ1 - A + Δ by lia.
set (δ2 := δ1 - A).
have [k [q [EQ LT1]]] : ∃ k q, Δ = k × Π + q ∧ q < Π.
{ by eexists; eexists; split; [ apply divn_eq | rewrite ltn_mod ]. }
subst Δ; have ->: δ2 + (k × Π + q) =k × Π + (δ2 + q) by lia.
have [h [j [EQ LT2]]] : ∃ k q, δ2 = k × Π + q ∧ q < Π.
{ by eexists; eexists; split; [ apply divn_eq | rewrite ltn_mod ]. }
subst δ2; rewrite !EQ; clear EQ.
rewrite divnDl; last by rewrite dvdn_mull // dvdnn.
rewrite !mulnDl mulnK // subnDA.
rewrite -![_ + j + q]addnA.
rewrite divnDl; last by rewrite dvdn_mull // dvdnn.
rewrite !mulnDl mulnK // subnDA.
replace (j %/ Π) with 0; last by symmetry; apply divn_small.
replace (q %/ Π) with 0; last by symmetry; apply divn_small.
rewrite mul0n addn0 divnDl; last by rewrite dvdn_mull // dvdnn.
rewrite !mulnDl mulnK // subnDA mul0n subn0.
set (s := (j + q) %/ Π).
have F: s ≤ 1.
{ rewrite /s; apply leq_trans with ((Π + q) %/ Π).
{ by apply leq_div2r; lia. }
{ by rewrite divnDl; [rewrite divnn POS divn_small | apply dvdnn]. }
}
rewrite [k×γ + _]addnC -!addnA leq_add2l.
have ->: ∀ a b c, a + b - c - a = b - c by lia.
rewrite !addnA -!mulnDl -!subnDA -!mulnDl !addnA.
have → : (k + h) × Π + j + q - (A + (k + h + s) × Π)
= j + q - (A + s × Π) by lia.
destruct s as [ | [ | ]] ⇒ //; clear F.
{ by rewrite add0n mul0n addn0; lia. }
rewrite /A; lia.
Qed.
The introduced SBF is also a unit-supply SBF.
Lemma prm_sbf_unit : unit_supply_bound_function (prm_sbf Π γ).
Proof.
move: H_periodic_resource_model ⇒ [_ [LEΠ _]].
move ⇒ δ; rewrite /prm_sbf !subnDAC.
have [Z|POS] := posnP Π; first by subst; lia.
have [h [j [EQ LT2]]] : ∃ k q, δ = k × Π + q ∧ q < Π.
{ by eexists; eexists; split; [ apply divn_eq | rewrite ltn_mod ]. }
subst δ; rewrite -addn1 -[leqRHS]addn1 !subnBA // !subn0.
have ALT : j + 1 + γ < Π ∨ j + 1 + γ = Π ∨ Π < j + 1 + γ < 2 × Π ∨ j + 1 + γ = 2 × Π by lia.
have [Z|POSh] := posnP h.
{ subst; rewrite mul0n add0n; move: ALT ⇒ [NEQ|[NEQ|[NEQ|NEQ]]].
- by rewrite !divn_small //; lia.
- by rewrite !NEQ subnn div0n mul0n divn_small; lia.
- have ->: (j + γ - Π) %/ Π = 0 by rewrite divn_small; lia.
have ->: (j + 1 + γ - Π) %/ Π = 0 by rewrite divn_small; lia.
by lia.
- have ->: (j + γ - Π) %/ Π = 0 by rewrite divn_small; lia.
rewrite NEQ; have ->: 2 × Π - Π = Π by lia.
by rewrite divnK ?dvdnn // divnn POS; lia. }
{ have → : h × Π + j + 1 + γ - Π = (h - 1) × Π + j + 1 + γ.
{ by rewrite mulnBl -!addnA addBnAC; [ lia | apply leq_mul ]. }
have → : h × Π + j + γ - Π = (h - 1) × Π + j + γ.
{ by rewrite mulnBl -!addnA addBnAC; [ lia | apply leq_mul ]. }
rewrite -!addnA divnDl; last by rewrite dvdn_mull //.
rewrite mulnK // !mulnDl [in leqRHS]divnDl; last by rewrite dvdn_mull //.
rewrite !mulnDl mulnK // -!addnA leq_add2l !addnA.
move: ALT ⇒ [NEQ|[NEQ|[NEQ|NEQ]]].
- by rewrite !divn_small //; lia.
- by rewrite !NEQ divnn POS mul1n divn_small; lia.
- have ->: (j + γ) %/ Π = 1 by apply divn_leq; lia.
have ->: (j + 1 + γ) %/ Π = 1 by apply divn_leq; lia.
by rewrite mul1n; lia.
- have ->: (j + γ) %/ Π = 1 by apply divn_leq; lia.
rewrite NEQ divnK; last by apply dvdn_mull, dvdnn.
by rewrite mulnK //; lia.
}
Qed.
Proof.
move: H_periodic_resource_model ⇒ [_ [LEΠ _]].
move ⇒ δ; rewrite /prm_sbf !subnDAC.
have [Z|POS] := posnP Π; first by subst; lia.
have [h [j [EQ LT2]]] : ∃ k q, δ = k × Π + q ∧ q < Π.
{ by eexists; eexists; split; [ apply divn_eq | rewrite ltn_mod ]. }
subst δ; rewrite -addn1 -[leqRHS]addn1 !subnBA // !subn0.
have ALT : j + 1 + γ < Π ∨ j + 1 + γ = Π ∨ Π < j + 1 + γ < 2 × Π ∨ j + 1 + γ = 2 × Π by lia.
have [Z|POSh] := posnP h.
{ subst; rewrite mul0n add0n; move: ALT ⇒ [NEQ|[NEQ|[NEQ|NEQ]]].
- by rewrite !divn_small //; lia.
- by rewrite !NEQ subnn div0n mul0n divn_small; lia.
- have ->: (j + γ - Π) %/ Π = 0 by rewrite divn_small; lia.
have ->: (j + 1 + γ - Π) %/ Π = 0 by rewrite divn_small; lia.
by lia.
- have ->: (j + γ - Π) %/ Π = 0 by rewrite divn_small; lia.
rewrite NEQ; have ->: 2 × Π - Π = Π by lia.
by rewrite divnK ?dvdnn // divnn POS; lia. }
{ have → : h × Π + j + 1 + γ - Π = (h - 1) × Π + j + 1 + γ.
{ by rewrite mulnBl -!addnA addBnAC; [ lia | apply leq_mul ]. }
have → : h × Π + j + γ - Π = (h - 1) × Π + j + γ.
{ by rewrite mulnBl -!addnA addBnAC; [ lia | apply leq_mul ]. }
rewrite -!addnA divnDl; last by rewrite dvdn_mull //.
rewrite mulnK // !mulnDl [in leqRHS]divnDl; last by rewrite dvdn_mull //.
rewrite !mulnDl mulnK // -!addnA leq_add2l !addnA.
move: ALT ⇒ [NEQ|[NEQ|[NEQ|NEQ]]].
- by rewrite !divn_small //; lia.
- by rewrite !NEQ divnn POS mul1n divn_small; lia.
- have ->: (j + γ) %/ Π = 1 by apply divn_leq; lia.
have ->: (j + 1 + γ) %/ Π = 1 by apply divn_leq; lia.
by rewrite mul1n; lia.
- have ->: (j + γ) %/ Π = 1 by apply divn_leq; lia.
rewrite NEQ divnK; last by apply dvdn_mull, dvdnn.
by rewrite mulnK //; lia.
}
Qed.
In the following, we prove that the introduced SBF is valid.
We prove the validity claim via a case analysis on the interval for
which the SBF is computed. First, we consider an interval that falls
completely within a period
[kΠ, (k + 1)Π)
for some k.
Variable (k : nat) (q1 q2 : duration).
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Local Lemma prm_sbf_valid_aux_11 :
(q2 - q1) - (Π - γ) ≤ supply_during sched (k × Π + q1) (k × Π + q2).
Proof.
have [Z|LT] := leqP q2 q1; first by lia.
set (P2 t := (k × Π + q1) ≤ t < (k × Π + q2)).
have LEQ: \sum_(k × Π ≤ t < (k + 1) × Π) (has_supply sched t && P2 t) ≤ supply_during sched (k × Π + q1) (k × Π + q2).
{ erewrite big_cat_nat with (n := k × Π + q1); [rewrite //= | lia | lia].
erewrite big_cat_nat with (m := k × Π + q1) (n := k × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k × Π ≤ i < k × Π + q1) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
have → : \sum_(k × Π + q2 ≤ i < (k + 1) × Π) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota => /andP [_ FF]; lia. }
rewrite add0n addn0; apply leq_sum_seq ⇒ //= ⇒ t; rewrite mem_index_iota ⇒ /andP [LEQ1 LEQ2] _.
by rewrite /P2 LEQ1 LEQ2 !andbT /has_supply; case : (supply_at _ _ ).
}
rewrite -(leqRW LEQ); clear LEQ.
have A : q2 - q1 ≤ \sum_(k × Π ≤ t < (k + 1) × Π) P2 t.
{ erewrite big_cat_nat with (n := k × Π + q1); [rewrite //= | lia | lia].
have → : \sum_(k × Π ≤ i < k × Π + q1) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
erewrite big_cat_nat with (n := k × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k × Π + q2 ≤ i < (k + 1) × Π) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite -[q2 - q1](sum_of_ones (k × Π + q1)) add0n addn0.
have → : k × Π + q1 + (q2 - q1) = k × Π + q2 by lia.
rewrite big_seq_cond [leqRHS]big_seq_cond.
by apply leq_sum ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [NEQ _]; lia.
}
have B : γ ≤ \sum_(k × Π ≤ t < (k + 1) × Π) has_supply sched t.
{ move: (H_periodic_resource_model) ⇒ [_ [_ LE]]; rewrite (leqRW (LE k)).
rewrite mulnC [_ × ( _ + _ ) ]mulnC; apply leq_sum ⇒ t _.
by move: (H_unit_supply_proc_model (sched t)); rewrite /has_supply /supply_at; case:(supply_in _); lia.
}
by rewrite -(leqRW (pigeonhole_on_interval _ _ _ _ _ _ _ _)); [ | apply B |apply A]; lia.
Qed.
(q2 - q1) - (Π - γ) ≤ supply_during sched (k × Π + q1) (k × Π + q2).
Proof.
have [Z|LT] := leqP q2 q1; first by lia.
set (P2 t := (k × Π + q1) ≤ t < (k × Π + q2)).
have LEQ: \sum_(k × Π ≤ t < (k + 1) × Π) (has_supply sched t && P2 t) ≤ supply_during sched (k × Π + q1) (k × Π + q2).
{ erewrite big_cat_nat with (n := k × Π + q1); [rewrite //= | lia | lia].
erewrite big_cat_nat with (m := k × Π + q1) (n := k × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k × Π ≤ i < k × Π + q1) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
have → : \sum_(k × Π + q2 ≤ i < (k + 1) × Π) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota => /andP [_ FF]; lia. }
rewrite add0n addn0; apply leq_sum_seq ⇒ //= ⇒ t; rewrite mem_index_iota ⇒ /andP [LEQ1 LEQ2] _.
by rewrite /P2 LEQ1 LEQ2 !andbT /has_supply; case : (supply_at _ _ ).
}
rewrite -(leqRW LEQ); clear LEQ.
have A : q2 - q1 ≤ \sum_(k × Π ≤ t < (k + 1) × Π) P2 t.
{ erewrite big_cat_nat with (n := k × Π + q1); [rewrite //= | lia | lia].
have → : \sum_(k × Π ≤ i < k × Π + q1) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
erewrite big_cat_nat with (n := k × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k × Π + q2 ≤ i < (k + 1) × Π) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite -[q2 - q1](sum_of_ones (k × Π + q1)) add0n addn0.
have → : k × Π + q1 + (q2 - q1) = k × Π + q2 by lia.
rewrite big_seq_cond [leqRHS]big_seq_cond.
by apply leq_sum ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [NEQ _]; lia.
}
have B : γ ≤ \sum_(k × Π ≤ t < (k + 1) × Π) has_supply sched t.
{ move: (H_periodic_resource_model) ⇒ [_ [_ LE]]; rewrite (leqRW (LE k)).
rewrite mulnC [_ × ( _ + _ ) ]mulnC; apply leq_sum ⇒ t _.
by move: (H_unit_supply_proc_model (sched t)); rewrite /has_supply /supply_at; case:(supply_in _); lia.
}
by rewrite -(leqRW (pigeonhole_on_interval _ _ _ _ _ _ _ _)); [ | apply B |apply A]; lia.
Qed.
Let
[t1, t2)
:= [kΠ + q1, kΠ + q2)
be the interval under analysis.
By unfolding the expression for sbf and using the above
inequalities, we show that the supply during
[t1, t2)
is
indeed lower-bounded by sbf (t2-t1).
Lemma prm_sbf_valid_aux_1 :
prm_sbf Π γ (t2 - t1) ≤ supply_during sched t1 t2.
Proof.
move: (H_periodic_resource_model) ⇒ [POS [LE VAL]].
rewrite -(leqRW prm_sbf_valid_aux_11) // /prm_sbf.
have ->: ∀ a b, a - 2 × b = a - b - b by lia.
have ->: k × Π + q2 - (k × Π + q1) = q2 - q1 by lia.
rewrite subnBA //.
set (q3 := q2 - q1); set (q4 := q3 + γ); set (q5 := q4 - Π).
rewrite {2}(divn_eq q5 Π).
have → : q5 %/ Π × Π + q5 %% Π - (Π - γ) - q5 %/ Π × Π = q5 %% Π - (Π - γ).
{ have → : ∀ a b c d, a + b - c - d = a + b - d - c by lia.
by set (q6 := q5 %/ Π × Π); lia. }
apply leq_trans with (q5 %/ Π × γ + (q5 %% Π)); first by lia.
apply leq_trans with (q5 %/ Π × Π + (q5 %% Π)).
{ by rewrite leq_add2r leq_mul2l; apply/orP; right. }
by rewrite -divn_eq.
Qed.
End Case1.
prm_sbf Π γ (t2 - t1) ≤ supply_during sched t1 t2.
Proof.
move: (H_periodic_resource_model) ⇒ [POS [LE VAL]].
rewrite -(leqRW prm_sbf_valid_aux_11) // /prm_sbf.
have ->: ∀ a b, a - 2 × b = a - b - b by lia.
have ->: k × Π + q2 - (k × Π + q1) = q2 - q1 by lia.
rewrite subnBA //.
set (q3 := q2 - q1); set (q4 := q3 + γ); set (q5 := q4 - Π).
rewrite {2}(divn_eq q5 Π).
have → : q5 %/ Π × Π + q5 %% Π - (Π - γ) - q5 %/ Π × Π = q5 %% Π - (Π - γ).
{ have → : ∀ a b c d, a + b - c - d = a + b - d - c by lia.
by set (q6 := q5 %/ Π × Π); lia. }
apply leq_trans with (q5 %/ Π × γ + (q5 %% Π)); first by lia.
apply leq_trans with (q5 %/ Π × Π + (q5 %% Π)).
{ by rewrite leq_add2r leq_mul2l; apply/orP; right. }
by rewrite -divn_eq.
Qed.
End Case1.
For the second case, consider an interval that touches at least two
periods. That is, consider an interval
[k1 Π + q1, k2 Π + q2)
for
some k1 < k2.
Variables (k1 k2 : nat) (q1 q2 : duration).
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Hypothesis H_k1_lt_k2 : k1 < k2.
Hypothesis H_q1_small : q1 < Π.
Hypothesis H_q2_small : q2 < Π.
Hypothesis H_k1_lt_k2 : k1 < k2.
First, we show that the interval can be split into three
sub-intervals:
[k1 Π + q1, (k1 + 1) Π + q1)
,
[(k1 + 1) Π + q1, k2 Π)
, and [k2 Π, k2 Π + q2)
.
Lemma prm_sbf_valid_aux_21 :
supply_during sched (k1 × Π + q1) (k2 × Π + q2)
= supply_during sched (k1 × Π + q1) ((k1 + 1) × Π)
+ supply_during sched ((k1 + 1) × Π) (k2 × Π)
+ supply_during sched (k2 × Π) (k2 × Π + q2).
Proof.
apply/eqP. rewrite /supply_during.
erewrite big_cat_nat with (n := (k1 + 1) × Π); [rewrite //= | lia | ]; first last.
{ have [Δ [EQ LT]] : ∃ Δ, k2 = k1 + Δ ∧ Δ > 0 by (∃ (k2 - k1); lia).
by subst k2; rewrite !mulnDl -addnA leq_add2l mul1n -[leqRHS](leqRW (leq_addr _ _ )) leq_pmull. }
rewrite -!addnA eqn_add2l.
erewrite big_cat_nat with (n := k2 × Π); [rewrite //= | | lia ].
{ have [Δ [EQ LT]] : ∃ Δ, k2 = k1 + Δ ∧ Δ > 0 by (∃ (k2 - k1); lia).
by subst k2; rewrite leq_mul2r; apply/orP; right; lia. }
Qed.
supply_during sched (k1 × Π + q1) (k2 × Π + q2)
= supply_during sched (k1 × Π + q1) ((k1 + 1) × Π)
+ supply_during sched ((k1 + 1) × Π) (k2 × Π)
+ supply_during sched (k2 × Π) (k2 × Π + q2).
Proof.
apply/eqP. rewrite /supply_during.
erewrite big_cat_nat with (n := (k1 + 1) × Π); [rewrite //= | lia | ]; first last.
{ have [Δ [EQ LT]] : ∃ Δ, k2 = k1 + Δ ∧ Δ > 0 by (∃ (k2 - k1); lia).
by subst k2; rewrite !mulnDl -addnA leq_add2l mul1n -[leqRHS](leqRW (leq_addr _ _ )) leq_pmull. }
rewrite -!addnA eqn_add2l.
erewrite big_cat_nat with (n := k2 × Π); [rewrite //= | | lia ].
{ have [Δ [EQ LT]] : ∃ Δ, k2 = k1 + Δ ∧ Δ > 0 by (∃ (k2 - k1); lia).
by subst k2; rewrite leq_mul2r; apply/orP; right; lia. }
Qed.
In the following, we simply lower-bound the supply in each
of the three sub-intervals.
Supply in the interval
[k1 Π + q1, (k1 + 1) Π + q1)
is
lower-bounded by (Π - q1) - (Π - Θ).
Lemma prm_sbf_valid_aux_22 :
(Π - q1) - (Π - γ) ≤ supply_during sched (k1 × Π + q1) ((k1 + 1) × Π).
Proof.
set (P2 t := (k1 × Π + q1) ≤ t < ((k1 + 1) × Π)).
have LEQ: \sum_(k1 × Π ≤ t < (k1 + 1) × Π) (has_supply sched t && P2 t) ≤ supply_during sched (k1 × Π + q1) ((k1 + 1) × Π).
{ erewrite big_cat_nat with (n := k1 × Π + q1); [rewrite //= | lia | lia].
have → : \sum_(k1 × Π ≤ i < k1 × Π + q1) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite add0n; apply leq_sum_seq ⇒ //= ⇒ t; rewrite mem_index_iota ⇒ /andP [LEQ1 LEQ2] _.
by rewrite /P2 LEQ1 LEQ2 !andbT /has_supply; case : (supply_at _ _ ).
}
rewrite -(leqRW LEQ); clear LEQ.
have A : Π - q1 ≤ \sum_(k1 × Π ≤ t < (k1 + 1) × Π) P2 t.
{ erewrite big_cat_nat with (n := k1 × Π + q1); [rewrite //= | lia | lia].
have → : \sum_(k1 × Π ≤ i < k1 × Π + q1) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite -[Π - q1](sum_of_ones (k1 × Π + q1)) add0n.
have → : k1 × Π + q1 + (Π - q1) = (k1 + 1) × Π by lia.
rewrite big_seq_cond [leqRHS]big_seq_cond.
by apply leq_sum ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [NEQ _]; lia.
}
have B : γ ≤ \sum_(k1 × Π ≤ t < (k1 + 1) × Π) has_supply sched t.
{ move: (H_periodic_resource_model) ⇒ [_ [_ LE]]; rewrite (leqRW (LE k1)).
rewrite mulnC [_ × ( _ + _ ) ]mulnC; apply leq_sum ⇒ t _.
by move: (H_unit_supply_proc_model (sched t)); rewrite /has_supply /supply_at; case:(supply_in _); lia.
}
by rewrite -(leqRW (pigeonhole_on_interval _ _ _ _ _ _ _ _)); [ | apply B |apply A]; lia.
Qed.
(Π - q1) - (Π - γ) ≤ supply_during sched (k1 × Π + q1) ((k1 + 1) × Π).
Proof.
set (P2 t := (k1 × Π + q1) ≤ t < ((k1 + 1) × Π)).
have LEQ: \sum_(k1 × Π ≤ t < (k1 + 1) × Π) (has_supply sched t && P2 t) ≤ supply_during sched (k1 × Π + q1) ((k1 + 1) × Π).
{ erewrite big_cat_nat with (n := k1 × Π + q1); [rewrite //= | lia | lia].
have → : \sum_(k1 × Π ≤ i < k1 × Π + q1) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite add0n; apply leq_sum_seq ⇒ //= ⇒ t; rewrite mem_index_iota ⇒ /andP [LEQ1 LEQ2] _.
by rewrite /P2 LEQ1 LEQ2 !andbT /has_supply; case : (supply_at _ _ ).
}
rewrite -(leqRW LEQ); clear LEQ.
have A : Π - q1 ≤ \sum_(k1 × Π ≤ t < (k1 + 1) × Π) P2 t.
{ erewrite big_cat_nat with (n := k1 × Π + q1); [rewrite //= | lia | lia].
have → : \sum_(k1 × Π ≤ i < k1 × Π + q1) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite -[Π - q1](sum_of_ones (k1 × Π + q1)) add0n.
have → : k1 × Π + q1 + (Π - q1) = (k1 + 1) × Π by lia.
rewrite big_seq_cond [leqRHS]big_seq_cond.
by apply leq_sum ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [NEQ _]; lia.
}
have B : γ ≤ \sum_(k1 × Π ≤ t < (k1 + 1) × Π) has_supply sched t.
{ move: (H_periodic_resource_model) ⇒ [_ [_ LE]]; rewrite (leqRW (LE k1)).
rewrite mulnC [_ × ( _ + _ ) ]mulnC; apply leq_sum ⇒ t _.
by move: (H_unit_supply_proc_model (sched t)); rewrite /has_supply /supply_at; case:(supply_in _); lia.
}
by rewrite -(leqRW (pigeonhole_on_interval _ _ _ _ _ _ _ _)); [ | apply B |apply A]; lia.
Qed.
Lemma prm_sbf_valid_aux_23 :
(k2 - (k1 + 1)) × γ ≤ supply_during sched ((k1 + 1) × Π) (k2 × Π).
Proof.
move: (H_periodic_resource_model) ⇒ [_ [_ LE]].
move: (H_k1_lt_k2) ⇒ NEQ; rewrite -addn1 in NEQ.
set (k3 := k1 + 1) in ×.
interval_to_duration k3 k2 δ.
have ->: k3 + δ - k3 = δ by lia.
clear H_k1_lt_k2; induction δ as [ | δ IHδ]; first by rewrite mul0n.
unfold supply_during in ×.
erewrite big_cat_nat with (n := (k3 + δ) × Π); [rewrite //= | lia | lia].
rewrite -(leqRW IHδ); clear IHδ.
by rewrite addnS -[in leqRHS]addn1 [_ × Π]mulnC [(_ + _ ) × Π]mulnC -(leqRW (LE _)); lia.
Qed.
(k2 - (k1 + 1)) × γ ≤ supply_during sched ((k1 + 1) × Π) (k2 × Π).
Proof.
move: (H_periodic_resource_model) ⇒ [_ [_ LE]].
move: (H_k1_lt_k2) ⇒ NEQ; rewrite -addn1 in NEQ.
set (k3 := k1 + 1) in ×.
interval_to_duration k3 k2 δ.
have ->: k3 + δ - k3 = δ by lia.
clear H_k1_lt_k2; induction δ as [ | δ IHδ]; first by rewrite mul0n.
unfold supply_during in ×.
erewrite big_cat_nat with (n := (k3 + δ) × Π); [rewrite //= | lia | lia].
rewrite -(leqRW IHδ); clear IHδ.
by rewrite addnS -[in leqRHS]addn1 [_ × Π]mulnC [(_ + _ ) × Π]mulnC -(leqRW (LE _)); lia.
Qed.
Lemma prm_sbf_valid_aux_24 :
q2 - (Π - γ) ≤ supply_during sched (k2 × Π) (k2 × Π + q2).
Proof.
set (P2 t := (k2 × Π) ≤ t < (k2 × Π + q2)).
have LEQ: \sum_(k2 × Π ≤ t < (k2 + 1) × Π) (has_supply sched t && P2 t) ≤ supply_during sched (k2 × Π) (k2 × Π + q2).
{ erewrite big_cat_nat with (n := k2 × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k2 × Π + q2 ≤ i < (k2 + 1) × Π) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite addn0; apply leq_sum_seq ⇒ //= ⇒ t; rewrite mem_index_iota ⇒ /andP [LEQ1 LEQ2] _.
by rewrite /P2 LEQ1 LEQ2 !andbT /has_supply; case : (supply_at _ _ ).
}
rewrite -(leqRW LEQ); clear LEQ.
have A : q2 ≤ \sum_(k2 × Π ≤ t < (k2 + 1) × Π) P2 t.
{ erewrite big_cat_nat with (n := k2 × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k2 × Π + q2 ≤ i < (k2 + 1) × Π) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite -{1}[q2](sum_of_ones (k2 × Π)) addn0.
rewrite big_seq_cond [leqRHS]big_seq_cond.
by apply leq_sum ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [NEQ _]; lia.
}
have B : γ ≤ \sum_(k2 × Π ≤ t < (k2 + 1) × Π) has_supply sched t.
{ move: (H_periodic_resource_model) ⇒ [_ [_ LE]]; rewrite (leqRW (LE k2)).
rewrite mulnC [_ × ( _ + _ ) ]mulnC; apply leq_sum ⇒ t _.
by move: (H_unit_supply_proc_model (sched t)); rewrite /has_supply /supply_at; case:(supply_in _); lia.
}
by rewrite -(leqRW (pigeonhole_on_interval _ _ _ _ _ _ _ _)); [ | apply B |apply A]; lia.
Qed.
q2 - (Π - γ) ≤ supply_during sched (k2 × Π) (k2 × Π + q2).
Proof.
set (P2 t := (k2 × Π) ≤ t < (k2 × Π + q2)).
have LEQ: \sum_(k2 × Π ≤ t < (k2 + 1) × Π) (has_supply sched t && P2 t) ≤ supply_during sched (k2 × Π) (k2 × Π + q2).
{ erewrite big_cat_nat with (n := k2 × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k2 × Π + q2 ≤ i < (k2 + 1) × Π) has_supply sched i && P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite addn0; apply leq_sum_seq ⇒ //= ⇒ t; rewrite mem_index_iota ⇒ /andP [LEQ1 LEQ2] _.
by rewrite /P2 LEQ1 LEQ2 !andbT /has_supply; case : (supply_at _ _ ).
}
rewrite -(leqRW LEQ); clear LEQ.
have A : q2 ≤ \sum_(k2 × Π ≤ t < (k2 + 1) × Π) P2 t.
{ erewrite big_cat_nat with (n := k2 × Π + q2); [rewrite //= | lia | lia].
have → : \sum_(k2 × Π + q2 ≤ i < (k2 + 1) × Π) P2 i = 0.
{ by apply big1_seq ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [_ FF]; lia. }
rewrite -{1}[q2](sum_of_ones (k2 × Π)) addn0.
rewrite big_seq_cond [leqRHS]big_seq_cond.
by apply leq_sum ⇒ t; rewrite /P2 mem_index_iota ⇒ /andP [NEQ _]; lia.
}
have B : γ ≤ \sum_(k2 × Π ≤ t < (k2 + 1) × Π) has_supply sched t.
{ move: (H_periodic_resource_model) ⇒ [_ [_ LE]]; rewrite (leqRW (LE k2)).
rewrite mulnC [_ × ( _ + _ ) ]mulnC; apply leq_sum ⇒ t _.
by move: (H_unit_supply_proc_model (sched t)); rewrite /has_supply /supply_at; case:(supply_in _); lia.
}
by rewrite -(leqRW (pigeonhole_on_interval _ _ _ _ _ _ _ _)); [ | apply B |apply A]; lia.
Qed.
Let
[t1, t2)
:= [k1 Π + q1, k2 Π + q2)
be the interval under analysis.
By unfolding the expression for sbf and using the above
inequalities, we show that the supply during
[t1, t2)
is indeed lower-bounded by sbf (t2-t1).
Lemma prm_sbf_valid_aux_2 :
prm_sbf Π γ (t2 - t1) ≤ supply_during sched t1 t2.
Proof.
rewrite /prm_sbf.
move: (H_periodic_resource_model) ⇒ [POS [LE VAL]].
rewrite prm_sbf_valid_aux_21 //
-(leqRW prm_sbf_valid_aux_22) //
-(leqRW prm_sbf_valid_aux_23) //
-(leqRW prm_sbf_valid_aux_24) //.
have ->: Π - q1 - (Π - γ) = γ - q1 by lia.
have [NEQk1|NEQk2] : k1 + 1 = k2 ∨ k1 + 1 < k2 by lia.
{ subst k2; rewrite subnn mul0n addn0; clear H_k1_lt_k2.
have ->: ∀ a b, a - 2 × b = a - b - b by lia.
have ->: (k1 + 1) × Π + q2 - (k1 × Π + q1) = Π + q2 - q1 by lia.
have ->: (Π + q2 - q1) = (Π - q1 + q2) by lia.
have ->: Π - q1 + q2 - (Π - γ) = q2 + γ - q1 by lia.
have [NEQ | NEQ] : (q2 + γ - q1 < Π) ∨ (Π ≤ q2 + γ - q1 < 2 × Π).
{ by enough (A : q2 + γ - q1 < 2 × Π); lia. }
{ by rewrite divn_small // !mul0n add0n subn0; lia. }
{ by have ->: (q2 + γ - q1) %/ Π = 1; [apply divn_leq | ]; lia. }
}
{ have ->: ∀ a b, a - 2 × b = a - b - b by lia.
have ->: k2 × Π + q2 - (k1 × Π + q1) = (k2 - k1) × Π + q2 - q1 by lia.
have ->: (k2 - k1) × Π + q2 - q1 - (Π - γ) = (k2 - (k1 + 1)) × Π + q2 - q1 + γ.
{ rewrite subnBA // -addnBAC; first lia.
apply leq_trans with (2 × Π + q2 - q1); first lia.
by rewrite leq_sub2r // leq_add2r leq_mul //; lia.
}
have [k3 ->] : ∃ k3, (k2 - (k1 + 1)) = k3 + 1 by (∃ (k2 - (k1 + 1) - 1); lia).
rewrite !mulnDl mul1n.
have → : k3 × Π + Π + q2 - q1 + γ = k3 × Π + (Π + q2 - q1 + γ) by lia.
rewrite divnDl ?mulnK // ?mulnDl.
have [NEQ | [NEQ | NEQ]] :
(Π + q2 - q1 + γ < Π) ∨ (Π ≤ Π + q2 - q1 + γ < 2 × Π) ∨ (2 × Π ≤ Π + q2 - q1 + γ < 3 × Π).
{ by enough (F : 0 ≤ Π + q2 - q1 + γ < 3 × Π); lia. }
{ by rewrite divn_small //; lia. }
{ by have ->: (Π + q2 - q1 + γ) %/ Π = 1; [apply divn_leq | ]; lia. }
{ by have ->: (Π + q2 - q1 + γ) %/ Π = 2; [apply divn_leq | ]; lia. }
}
Qed.
End Case2.
prm_sbf Π γ (t2 - t1) ≤ supply_during sched t1 t2.
Proof.
rewrite /prm_sbf.
move: (H_periodic_resource_model) ⇒ [POS [LE VAL]].
rewrite prm_sbf_valid_aux_21 //
-(leqRW prm_sbf_valid_aux_22) //
-(leqRW prm_sbf_valid_aux_23) //
-(leqRW prm_sbf_valid_aux_24) //.
have ->: Π - q1 - (Π - γ) = γ - q1 by lia.
have [NEQk1|NEQk2] : k1 + 1 = k2 ∨ k1 + 1 < k2 by lia.
{ subst k2; rewrite subnn mul0n addn0; clear H_k1_lt_k2.
have ->: ∀ a b, a - 2 × b = a - b - b by lia.
have ->: (k1 + 1) × Π + q2 - (k1 × Π + q1) = Π + q2 - q1 by lia.
have ->: (Π + q2 - q1) = (Π - q1 + q2) by lia.
have ->: Π - q1 + q2 - (Π - γ) = q2 + γ - q1 by lia.
have [NEQ | NEQ] : (q2 + γ - q1 < Π) ∨ (Π ≤ q2 + γ - q1 < 2 × Π).
{ by enough (A : q2 + γ - q1 < 2 × Π); lia. }
{ by rewrite divn_small // !mul0n add0n subn0; lia. }
{ by have ->: (q2 + γ - q1) %/ Π = 1; [apply divn_leq | ]; lia. }
}
{ have ->: ∀ a b, a - 2 × b = a - b - b by lia.
have ->: k2 × Π + q2 - (k1 × Π + q1) = (k2 - k1) × Π + q2 - q1 by lia.
have ->: (k2 - k1) × Π + q2 - q1 - (Π - γ) = (k2 - (k1 + 1)) × Π + q2 - q1 + γ.
{ rewrite subnBA // -addnBAC; first lia.
apply leq_trans with (2 × Π + q2 - q1); first lia.
by rewrite leq_sub2r // leq_add2r leq_mul //; lia.
}
have [k3 ->] : ∃ k3, (k2 - (k1 + 1)) = k3 + 1 by (∃ (k2 - (k1 + 1) - 1); lia).
rewrite !mulnDl mul1n.
have → : k3 × Π + Π + q2 - q1 + γ = k3 × Π + (Π + q2 - q1 + γ) by lia.
rewrite divnDl ?mulnK // ?mulnDl.
have [NEQ | [NEQ | NEQ]] :
(Π + q2 - q1 + γ < Π) ∨ (Π ≤ Π + q2 - q1 + γ < 2 × Π) ∨ (2 × Π ≤ Π + q2 - q1 + γ < 3 × Π).
{ by enough (F : 0 ≤ Π + q2 - q1 + γ < 3 × Π); lia. }
{ by rewrite divn_small //; lia. }
{ by have ->: (Π + q2 - q1 + γ) %/ Π = 1; [apply divn_leq | ]; lia. }
{ by have ->: (Π + q2 - q1 + γ) %/ Π = 2; [apply divn_leq | ]; lia. }
}
Qed.
End Case2.
By using the two auxiliary lemmas above, we prove that sbf
is a valid SBF.
Lemma prm_sbf_valid :
valid_supply_bound_function arr_seq sched (prm_sbf Π γ).
Proof.
have FS: ∀ a, 0 - a = 0 by lia.
split; first by rewrite /prm_sbf !FS addn0 div0n mul0n.
move ⇒ j t1 t2 ARR _ t /andP [LE1 LE2].
move: H_periodic_resource_model ⇒ [POSΠ [LE SUP]].
have [k1 [q1 [EQ1 LT1]]] : ∃ k1 q1, t1 = k1 × Π + q1 ∧ q1 < Π.
{ by eexists; eexists; split; [apply divn_eq | apply ltn_pmod]. }
have [k2 [q2 [EQ2 LT2]]] : ∃ k2 q2, t = k2 × Π + q2 ∧ q2 < Π.
{ by eexists; eexists; split; [apply divn_eq | apply ltn_pmod]. }
subst.
have [EQk|NEQk] : k1 = k2 ∨ k1 < k2.
{ enough (LEQ : k1 ≤ k2); first by lia.
move_neq_up LT; move_neq_down LE1.
apply leq_trans with (k2 × Π + Π); first by lia.
apply leq_trans with (k1 × Π); last by lia.
by rewrite -{2}[Π]mul1n -mulnDl leq_mul2r; apply/orP; right; lia.
}
{ by subst; apply prm_sbf_valid_aux_1. }
{ by apply prm_sbf_valid_aux_2. }
Qed.
End PeriodicResourceModelValidSBF.
valid_supply_bound_function arr_seq sched (prm_sbf Π γ).
Proof.
have FS: ∀ a, 0 - a = 0 by lia.
split; first by rewrite /prm_sbf !FS addn0 div0n mul0n.
move ⇒ j t1 t2 ARR _ t /andP [LE1 LE2].
move: H_periodic_resource_model ⇒ [POSΠ [LE SUP]].
have [k1 [q1 [EQ1 LT1]]] : ∃ k1 q1, t1 = k1 × Π + q1 ∧ q1 < Π.
{ by eexists; eexists; split; [apply divn_eq | apply ltn_pmod]. }
have [k2 [q2 [EQ2 LT2]]] : ∃ k2 q2, t = k2 × Π + q2 ∧ q2 < Π.
{ by eexists; eexists; split; [apply divn_eq | apply ltn_pmod]. }
subst.
have [EQk|NEQk] : k1 = k2 ∨ k1 < k2.
{ enough (LEQ : k1 ≤ k2); first by lia.
move_neq_up LT; move_neq_down LE1.
apply leq_trans with (k2 × Π + Π); first by lia.
apply leq_trans with (k1 × Π); last by lia.
by rewrite -{2}[Π]mul1n -mulnDl leq_mul2r; apply/orP; right; lia.
}
{ by subst; apply prm_sbf_valid_aux_1. }
{ by apply prm_sbf_valid_aux_2. }
Qed.
End PeriodicResourceModelValidSBF.