Library prosa.results.rta.ovh.fp.fully_preemptive
Require Export prosa.model.job.properties.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.readiness.sequential.
Require Export prosa.analysis.facts.model.overheads.schedule.
Require Export prosa.analysis.facts.preemption.task.preemptive.
Require Export prosa.analysis.facts.preemption.rtc_threshold.preemptive.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.fp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fp.
Require Export prosa.analysis.facts.model.task_cost.
Require Export prosa.analysis.facts.model.overheads.sbf.fp.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.readiness.sequential.
Require Export prosa.analysis.facts.model.overheads.schedule.
Require Export prosa.analysis.facts.preemption.task.preemptive.
Require Export prosa.analysis.facts.preemption.rtc_threshold.preemptive.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.fp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fp.
Require Export prosa.analysis.facts.model.task_cost.
Require Export prosa.analysis.facts.model.overheads.sbf.fp.
RTA for Fully Preemptive FP Scheduling on Uniprocessors with Overheads
Defining the System Model
- the processor model,
 - tasks, jobs, and their parameters,
 - the task set and the task under analysis,
 - the sequence of job arrivals,
 - the absence of self-suspensions,
 - an arbitrary schedule of the task set, and finally,
 - an upper bound on overhead-induced delays.
 
Processor Model
Tasks and Jobs
... and their associated jobs, where each job has a corresponding task
      job_task, an execution time job_cost, and an arrival time
      job_arrival. 
Furthermore, assume that jobs and tasks are fully preemptive. 
  #[local] Existing Instance fully_preemptive_job_model.
#[local] Existing Instance fully_preemptive_task_model.
#[local] Existing Instance fully_preemptive_rtc_threshold.
#[local] Existing Instance fully_preemptive_task_model.
#[local] Existing Instance fully_preemptive_rtc_threshold.
The Job Arrival Sequence
  Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Additionally, we assume that all jobs in arr_seq have positive execution
      costs. This requirement is not fundamental to the analysis approach itself
      but reflects an artifact of the current proof structure specific to upper
      bounds on the total duration of overheads. 
Absence of Self-Suspensions
The Schedule
  Context {FP : FP_policy Task}.
Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP.
Hypothesis H_priority_is_transitive : transitive_task_priorities FP.
Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP.
Hypothesis H_priority_is_transitive : transitive_task_priorities FP.
Consider a work-conserving, valid uniprocessor schedule with explicit
      overheads that corresponds to the given arrival sequence arr_seq (and
      hence the given task set ts). 
  Variable sched : schedule (overheads.processor_state Job).
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
We assume that the schedule respects the given FP scheduling policy. 
Furthermore, we require that the schedule ensures two additional
      properties: jobs of the same task are executed in the order of their
      arrival, ... 
... and preemptions occur only when strictly required by the scheduling
      policy (specifically, a job is never preempted by another job of equal
      priority). 
Bounding the Total Overhead Duration
  Variable DB CSB CRPDB : duration.
Hypothesis H_valid_overheads_model : overhead_resource_model sched DB CSB CRPDB.
Hypothesis H_valid_overheads_model : overhead_resource_model sched DB CSB CRPDB.
To conservatively account for the maximum cumulative delay that task tsk
      may experience due to scheduling overheads, we introduce an overhead
      bound. This term upper-bounds the maximum cumulative duration during
      which processor cycles are "lost" to dispatch, context-switch, and
      preemption-related delays in a given interval.
 
      Under FP scheduling, the bound in an interval of length Δ is determined
      by the arrivals of tasks with higher-or-equal priority relative to
      tsk. Up to n such arrivals can lead to at most 1 + 2n segments
      without a schedule change, each potentially incurring dispatch,
      context-switch, and preemption-related overhead.
 
      We denote this bound by overhead_bound for the task under analysis
      tsk. 
  Let overhead_bound Δ :=
(DB + CSB + CRPDB) × (1 + 2 × \sum_(tsk_o <- ts | hep_task tsk_o tsk) max_arrivals tsk_o Δ).
(DB + CSB + CRPDB) × (1 + 2 × \sum_(tsk_o <- ts | hep_task tsk_o tsk) max_arrivals tsk_o Δ).
Maximum Length of a Busy Interval
  Definition busy_window_recurrence_solution (L : duration) :=
L > 0
∧ L ≥ overhead_bound L + total_hep_request_bound_function_FP ts tsk L.
L > 0
∧ L ≥ overhead_bound L + total_hep_request_bound_function_FP ts tsk L.
Response-Time Bound
  Definition rta_recurrence_solution L R :=
∀ (A : duration),
is_in_search_space tsk L A →
∃ (F : duration),
F ≥ overhead_bound F
+ task_request_bound_function tsk (A + ε)
+ total_ohep_request_bound_function_FP ts tsk F
∧ A + R ≥ F.
∀ (A : duration),
is_in_search_space tsk L A →
∃ (F : duration),
F ≥ overhead_bound F
+ task_request_bound_function tsk (A + ε)
+ total_ohep_request_bound_function_FP ts tsk F
∧ A + R ≥ F.
Finally, using the sequential variant of abstract restricted-supply
      analysis, we establish that, given a bound on the maximum busy-window
      length L, any such R is indeed a sound response-time bound for task
      tsk under fully-preemptive fixed-priority scheduling on a unit-speed
      uniprocessor subject to scheduling overheads. 
  Theorem uniprocessor_response_time_bound_fully_preemptive_fp :
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
set (sSBF := fp_ovh_sbf_slow ts DB CSB CRPDB tsk).
move⇒ L [BW_POS BW_SOL] R SOL js ARRs TSKs.
have BLOCK: ∀ tsk , blocking_bound ts tsk = 0.
{ by move⇒ tsk2; rewrite /blocking_bound /parameters.task_max_nonpreemptive_segment
/fully_preemptive_task_model subnn big1_eq. }
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk sSBF by apply overheads_sbf_busy_valid ⇒ //=.
have USBF : unit_supply_bound_function sSBF by apply overheads_sbf_unit ⇒ //=.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := sSBF) ⇒ //=.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- apply instantiated_interference_and_workload_consistent_with_sequential_tasks ⇒ //.
- eapply busy_intervals_are_bounded_rs_fp with (SBF := sSBF) ⇒ //=.
+ exact: instantiated_i_and_w_are_coherent_with_schedule.
+ rewrite BLOCK add0n; apply bound_preserved_under_slowed.
unfold fp_blackout_bound, overhead_bound in *; lia.
- apply: valid_pred_sbf_switch_predicate; last (eapply overheads_sbf_busy_valid) ⇒ //=.
move ⇒ ? ? ? ? [? ?]; split ⇒ //.
by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by apply athep_workload_le_total_ohep_rbf.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by unshelve rewrite (leqRW (nonpreemptive_segments_bounded_by_blocking _ _ _ _ _ _ _ _ _)) ⇒ //.
- move ⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
{ by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence. }
apply: search_space_switch_IBF; last by exact: SP.
by move⇒ A1 Δ1; rewrite //= BLOCK.
+ move ⇒ F [FIX LE]; ∃ F; split ⇒ //.
rewrite /task_intra_IBF /task_rtct /fully_preemptive_rtc_threshold.
rewrite BLOCK subnn //= add0n addn0 subn0; split.
× apply bound_preserved_under_slowed.
move: FIX.
by rewrite /sSBF /fp_blackout_bound /overhead_bound; lia.
× exact: overheads_sbf_monotone.
Qed.
End RTAforFullyPreemptiveFPModelwithArrivalCurves.
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
set (sSBF := fp_ovh_sbf_slow ts DB CSB CRPDB tsk).
move⇒ L [BW_POS BW_SOL] R SOL js ARRs TSKs.
have BLOCK: ∀ tsk , blocking_bound ts tsk = 0.
{ by move⇒ tsk2; rewrite /blocking_bound /parameters.task_max_nonpreemptive_segment
/fully_preemptive_task_model subnn big1_eq. }
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk sSBF by apply overheads_sbf_busy_valid ⇒ //=.
have USBF : unit_supply_bound_function sSBF by apply overheads_sbf_unit ⇒ //=.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := sSBF) ⇒ //=.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- apply instantiated_interference_and_workload_consistent_with_sequential_tasks ⇒ //.
- eapply busy_intervals_are_bounded_rs_fp with (SBF := sSBF) ⇒ //=.
+ exact: instantiated_i_and_w_are_coherent_with_schedule.
+ rewrite BLOCK add0n; apply bound_preserved_under_slowed.
unfold fp_blackout_bound, overhead_bound in *; lia.
- apply: valid_pred_sbf_switch_predicate; last (eapply overheads_sbf_busy_valid) ⇒ //=.
move ⇒ ? ? ? ? [? ?]; split ⇒ //.
by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by apply athep_workload_le_total_ohep_rbf.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
by unshelve rewrite (leqRW (nonpreemptive_segments_bounded_by_blocking _ _ _ _ _ _ _ _ _)) ⇒ //.
- move ⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
{ by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence. }
apply: search_space_switch_IBF; last by exact: SP.
by move⇒ A1 Δ1; rewrite //= BLOCK.
+ move ⇒ F [FIX LE]; ∃ F; split ⇒ //.
rewrite /task_intra_IBF /task_rtct /fully_preemptive_rtc_threshold.
rewrite BLOCK subnn //= add0n addn0 subn0; split.
× apply bound_preserved_under_slowed.
move: FIX.
by rewrite /sSBF /fp_blackout_bound /overhead_bound; lia.
× exact: overheads_sbf_monotone.
Qed.
End RTAforFullyPreemptiveFPModelwithArrivalCurves.