Library prosa.analysis.facts.hyperperiod

In this file we prove some simple properties of hyperperiods of periodic tasks.
Section Hyperperiod.

Consider any type of periodic tasks, ...
  Context {Task : TaskType} `{PeriodicModel Task}.

... any task set ts, ...
  Variable ts : TaskSet Task.

... and any task tsk that belongs to this task set.
  Variable tsk : Task.
  Hypothesis H_tsk_in_ts: tsk \in ts.

A task set's hyperperiod is an integral multiple of each task's period in the task set.
  Lemma hyperperiod_int_mult_of_any_task:
     (k : nat),
      hyperperiod ts = k × task_period tsk.
  Proof. by apply/dvdnP; apply lcm_seq_is_mult_of_all_ints, map_f, H_tsk_in_ts. Qed.

End Hyperperiod.

In this section we show a property of hyperperiod in context of task sets with valid periods.
Consider any type of periodic tasks ...
  Context {Task : TaskType} `{PeriodicModel Task}.

... and any task set ts ...
  Variable ts : TaskSet Task.

... such that all tasks in ts have valid periods.
  Hypothesis H_valid_periods: valid_periods ts.

We show that the hyperperiod of task set ts is positive.
  Lemma valid_periods_imply_pos_hp:
    hyperperiod ts > 0.
  Proof.
    apply all_pos_implies_lcml_pos.
    moveb /mapP [x IN EQ]; subst b.
    now apply H_valid_periods.
  Qed.

End ValidPeriodsImplyPositiveHP.

In this section we prove some lemmas about the hyperperiod in context of the periodic model.
Section PeriodicLemmas.

Consider any type of tasks, ...
  Context {Task : TaskType}.
  Context `{TaskOffset Task}.
  Context `{PeriodicModel Task}.

... any type of jobs, ...
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.

... and a consistent arrival sequence with non-duplicate arrivals.
Consider a task set ts such that all tasks in ts have valid periods.
  Variable ts : TaskSet Task.
  Hypothesis H_valid_periods: valid_periods ts.

Let tsk be any periodic task in ts with a valid offset and period.
  Variable tsk : Task.
  Hypothesis H_task_in_ts: tsk \in ts.
  Hypothesis H_valid_offset: valid_offset arr_seq tsk.
  Hypothesis H_valid_period: valid_period tsk.
  Hypothesis H_periodic_task: respects_periodic_task_model arr_seq tsk.

Assume we have an infinite sequence of jobs in the arrival sequence.
Let O_max denote the maximum task offset in ts and let HP denote the hyperperiod of all tasks in ts.
  Let O_max := max_task_offset ts.
  Let HP := hyperperiod ts.

We show that the job corresponding to any job j1 in any other hyperperiod is of the same task as j1.
  Lemma corresponding_jobs_have_same_task:
     j1 j2,
      job_task (corresponding_job_in_hyperperiod ts arr_seq j1
               (starting_instant_of_corresponding_hyperperiod ts j2) (job_task j1)) = job_task j1.
  Proof.
    clear H_task_in_ts H_valid_period.
    intros ×.
    set ARRIVALS := (task_arrivals_between arr_seq (job_task j1) (starting_instant_of_hyperperiod ts (job_arrival j2))
          (starting_instant_of_hyperperiod ts (job_arrival j2) + HP)).
    set IND := (job_index_in_hyperperiod ts arr_seq j1 (starting_instant_of_hyperperiod ts (job_arrival j1)) (job_task j1)).
    have SIZE_G : size ARRIVALS IND job_task (nth j1 ARRIVALS IND) = job_task j1 by intro SG; rewrite nth_default.
    case: (boolP (size ARRIVALS == IND)) ⇒ [/eqP EQ|NEQ]; first by apply SIZE_G; lia.
    move : NEQ; rewrite neq_ltn; move ⇒ /orP [LT | G]; first by apply SIZE_G; lia.
    set jb := nth j1 ARRIVALS IND.
    have JOB_IN : jb \in ARRIVALS by apply mem_nth.
    rewrite /ARRIVALS /task_arrivals_between mem_filter in JOB_IN.
    now move : JOB_IN ⇒ /andP [/eqP TSK JB_IN].
  Qed.

We show that if a job j lies in the hyperperiod starting at instant t then j arrives in the interval [t, t + HP).
  Lemma all_jobs_arrive_within_hyperperiod:
     j t,
      j \in jobs_in_hyperperiod ts arr_seq t tsk
      t job_arrival j < t + HP.
  Proof.
    intros × JB_IN_HP.
    rewrite mem_filter in JB_IN_HP.
    move : JB_IN_HP ⇒ /andP [/eqP TSK JB_IN]; apply mem_bigcat_nat_exists in JB_IN.
    destruct JB_IN as [i [JB_IN INEQ]].
    apply job_arrival_at in JB_IN; rt_auto.
    by rewrite JB_IN.
  Qed.

We show that the number of jobs in a hyperperiod starting at n1 × HP + O_max is the same as the number of jobs in a hyperperiod starting at n2 × HP + O_max given that n1 is less than or equal to n2.
  Lemma eq_size_hyp_lt:
     n1 n2,
      n1 n2
      size (jobs_in_hyperperiod ts arr_seq (n1 × HP + O_max) tsk) =
      size (jobs_in_hyperperiod ts arr_seq (n2 × HP + O_max) tsk).
  Proof.
    intros × N1_LT.
    have → : n2 × HP + O_max = n1 × HP + O_max + (n2 - n1) × HP.
    { by rewrite -[in LHS](subnKC N1_LT) mulnDl addnAC. }
    destruct (hyperperiod_int_mult_of_any_task ts tsk H_task_in_ts) as [k HYP]; rewrite !/HP.
    rewrite [in X in _ = size (_ (n1 × HP + O_max + _ × X) tsk)]HYP.
    rewrite mulnA /HP /jobs_in_hyperperiod !size_of_task_arrivals_between.
    erewrite big_sum_eq_in_eq_sized_intervals ⇒ //; intros g G_LT.
    have OFF_G : task_offset tsk O_max by apply max_offset_g.
    have FG : v b n, v + b + n = v + n + b by intros *; lia.
    erewrite eq_size_of_task_arrivals_seperated_by_period ⇒ //; rt_eauto; last by lia.
    by rewrite FG.
  Qed.

We generalize the above lemma by lifting the condition on n1 and n2.
  Lemma eq_size_of_arrivals_in_hyperperiod:
     n1 n2,
      size (jobs_in_hyperperiod ts arr_seq (n1 × HP + O_max) tsk) =
      size (jobs_in_hyperperiod ts arr_seq (n2 × HP + O_max) tsk).
  Proof.
    intros ×.
    case : (boolP (n1 == n2)) ⇒ [/eqP EQ | NEQ]; first by rewrite EQ.
    move : NEQ; rewrite neq_ltn; move ⇒ /orP [LT | LT].
    + by apply eq_size_hyp_lt ⇒ //; lia.
    + move : (eq_size_hyp_lt n2 n1) ⇒ EQ_S.
      by feed_n 1 EQ_S ⇒ //; lia.
  Qed.

Consider any two jobs j1 and j2 that stem from the arrival sequence arr_seq such that j1 is of task tsk.
  Variable j1 : Job.
  Variable j2 : Job.
  Hypothesis H_j1_from_arr_seq: arrives_in arr_seq j1.
  Hypothesis H_j2_from_arr_seq: arrives_in arr_seq j2.
  Hypothesis H_j1_task: job_task j1 = tsk.

Assume that both j1 and j2 arrive after O_max.
We show that any job j that arrives in task arrivals in the same hyperperiod as j2 also arrives in task arrivals up to job_arrival j2 + HP.
  Lemma job_in_hp_arrives_in_task_arrivals_up_to:
     j,
      j \in jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk
      j \in task_arrivals_up_to arr_seq tsk (job_arrival j2 + HP).
  Proof.
    intros j J_IN.
    rewrite /task_arrivals_up_to.
    set jobs_in_hp := (jobs_in_hyperperiod ts arr_seq ((job_arrival j2 - O_max) %/ HP × HP + O_max) tsk).
    move : (J_IN) ⇒ J_ARR; apply all_jobs_arrive_within_hyperperiod in J_IN.
    rewrite /jobs_in_hp /jobs_in_hyperperiod /task_arrivals_up_to /task_arrivals_between mem_filter in J_ARR.
    move : J_ARR ⇒ /andP [/eqP TSK' NTH_IN].
    apply job_in_task_arrivals_between ⇒ //;
                                           first by apply in_arrivals_implies_arrived in NTH_IN; rt_eauto.
    eapply in_arrivals_implies_arrived; first by exact NTH_IN.
    apply mem_bigcat_nat_exists in NTH_IN.
    apply /andP; split ⇒ //.
    rewrite ltnS.
    apply leq_trans with (n := (job_arrival j2 - O_max) %/ HP × HP + O_max + HP); first by lia.
    rewrite leq_add2r.
    have O_M : (job_arrival j2 - O_max) %/ HP × HP job_arrival j2 - O_max by apply leq_trunc_div.
    have ARR_G : job_arrival j2 O_max by auto.
    by lia.
  Qed.

We show that job j1 arrives in its own hyperperiod.
  Lemma job_in_own_hp:
    j1 \in jobs_in_hyperperiod ts arr_seq ((job_arrival j1 - O_max) %/ HP × HP + O_max) tsk.
  Proof.
    apply job_in_task_arrivals_between ⇒ //; rt_eauto.
    apply /andP; split.
    + rewrite addnC -leq_subRL ⇒ //.
      by apply leq_trunc_div.
    + specialize (div_floor_add_g (job_arrival j1 - O_max) HP) ⇒ AB.
      feed_n 1 AB; first by apply valid_periods_imply_pos_hp ⇒ //.
      rewrite ltn_subLR // in AB.
      by rewrite -/(HP); lia.
  Qed.

We show that the corresponding_job_in_hyperperiod of j1 in j2's hyperperiod arrives in task arrivals up to job_arrival j2 + HP.
Finally, we show that the corresponding_job_in_hyperperiod of j1 in j2's hyperperiod arrives in the arrival sequence arr_seq.
  Lemma corresponding_job_arrives:
      arrives_in arr_seq (corresponding_job_in_hyperperiod ts arr_seq j1 (starting_instant_of_corresponding_hyperperiod ts j2) tsk).
  Proof.
    move : (corr_job_in_task_arrivals_up_to) ⇒ ARR_G.
    rewrite /task_arrivals_up_to /task_arrivals_between mem_filter in ARR_G.
    move : ARR_G ⇒ /andP [/eqP TSK' NTH_IN].
    by apply in_arrivals_implies_arrived in NTH_IN.
  Qed.

End PeriodicLemmas.