Library prosa.analysis.facts.periodic.arrival_times
Require Export prosa.model.task.arrival.periodic_as_sporadic.
Require Export prosa.analysis.facts.periodic.max_inter_arrival.
Require Export prosa.analysis.facts.model.offset.
Require Export prosa.analysis.facts.periodic.max_inter_arrival.
Require Export prosa.analysis.facts.model.offset.
In this module, we'll prove the known arrival
times of jobs that stem from periodic tasks.
Consider periodic tasks with an offset ...
... and any type of jobs associated with these tasks.
Consider any unique arrival sequence with consistent arrivals ...
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
... and any periodic task tsk with a valid offset and period.
Variable tsk : Task.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_valid_period: valid_period tsk.
Hypothesis H_task_respects_periodic_model: respects_periodic_task_model arr_seq tsk.
Hypothesis H_valid_offset: valid_offset arr_seq tsk.
Hypothesis H_valid_period: valid_period tsk.
Hypothesis H_task_respects_periodic_model: respects_periodic_task_model arr_seq tsk.
We show that the nth job j of task tsk
arrives at the instant task_offset tsk + n × task_period tsk.
Lemma periodic_arrival_times:
∀ n (j : Job),
arrives_in arr_seq j →
job_task j = tsk →
job_index arr_seq j = n →
job_arrival j = task_offset tsk + n × task_period tsk.
Proof.
induction n.
{ intros j ARR TSK_IN ZINDEX.
rewrite mul0n addn0.
exact: first_job_arrival ZINDEX.
}
{ intros j ARR TSK_IN JB_INDEX.
move : (H_task_respects_periodic_model j ARR) ⇒ PREV_JOB.
feed_n 2 PREV_JOB ⇒ //; first by lia.
move : PREV_JOB ⇒ [pj [ARR' [IND [TSK ARRIVAL]]]].
specialize (IHn pj); feed_n 3 IHn ⇒ //; first by rewrite IND JB_INDEX; lia.
rewrite ARRIVAL IHn; lia.
}
Qed.
∀ n (j : Job),
arrives_in arr_seq j →
job_task j = tsk →
job_index arr_seq j = n →
job_arrival j = task_offset tsk + n × task_period tsk.
Proof.
induction n.
{ intros j ARR TSK_IN ZINDEX.
rewrite mul0n addn0.
exact: first_job_arrival ZINDEX.
}
{ intros j ARR TSK_IN JB_INDEX.
move : (H_task_respects_periodic_model j ARR) ⇒ PREV_JOB.
feed_n 2 PREV_JOB ⇒ //; first by lia.
move : PREV_JOB ⇒ [pj [ARR' [IND [TSK ARRIVAL]]]].
specialize (IHn pj); feed_n 3 IHn ⇒ //; first by rewrite IND JB_INDEX; lia.
rewrite ARRIVAL IHn; lia.
}
Qed.
We show that for every job j of task tsk there exists a number
n such that j arrives at the instant task_offset tsk + n × task_period tsk.
Lemma job_arrival_times:
∀ j,
arrives_in arr_seq j →
job_task j = tsk →
∃ n, job_arrival j = task_offset tsk + n × task_period tsk.
Proof.
intros × ARR TSK.
∃ (job_index arr_seq j).
specialize (periodic_arrival_times (job_index arr_seq j) j) ⇒ J_ARR.
by feed_n 3 J_ARR ⇒ //.
Qed.
∀ j,
arrives_in arr_seq j →
job_task j = tsk →
∃ n, job_arrival j = task_offset tsk + n × task_period tsk.
Proof.
intros × ARR TSK.
∃ (job_index arr_seq j).
specialize (periodic_arrival_times (job_index arr_seq j) j) ⇒ J_ARR.
by feed_n 3 J_ARR ⇒ //.
Qed.
If a job j of task tsk arrives at task_offset tsk + n × task_period tsk
then the job_index of j is equal to n.
Lemma job_arr_index:
∀ n j,
arrives_in arr_seq j →
job_task j = tsk →
job_arrival j = task_offset tsk + n × task_period tsk →
job_index arr_seq j = n.
Proof.
have F : task_period tsk > 0 by auto.
induction n.
+ intros × ARR_J TSK ARR.
destruct (PeanoNat.Nat.zero_or_succ (job_index arr_seq j)) as [Z | [m SUCC]] ⇒ //.
by apply periodic_arrival_times in SUCC ⇒ //; lia.
+ intros × ARR_J TSK ARR.
specialize (H_task_respects_periodic_model j); feed_n 3 H_task_respects_periodic_model ⇒ //.
{ rewrite lt0n; apply /eqP; intro EQ.
apply (first_job_arrival _ H_valid_arrival_sequence tsk) in EQ ⇒ //.
by rewrite EQ in ARR; lia.
}
move : H_task_respects_periodic_model ⇒ [j' [ARR' [IND' [TSK' ARRIVAL']]]].
specialize (IHn j'); feed_n 3 IHn ⇒ //; first by rewrite ARR in ARRIVAL'; lia.
rewrite IHn in IND'.
destruct (PeanoNat.Nat.zero_or_succ (job_index arr_seq j)) as [Z | [m SUCC]]; last by lia.
rewrite (first_job_arrival arr_seq _ tsk)// in ARR.
by lia.
Qed.
End PeriodicArrivalTimes.
∀ n j,
arrives_in arr_seq j →
job_task j = tsk →
job_arrival j = task_offset tsk + n × task_period tsk →
job_index arr_seq j = n.
Proof.
have F : task_period tsk > 0 by auto.
induction n.
+ intros × ARR_J TSK ARR.
destruct (PeanoNat.Nat.zero_or_succ (job_index arr_seq j)) as [Z | [m SUCC]] ⇒ //.
by apply periodic_arrival_times in SUCC ⇒ //; lia.
+ intros × ARR_J TSK ARR.
specialize (H_task_respects_periodic_model j); feed_n 3 H_task_respects_periodic_model ⇒ //.
{ rewrite lt0n; apply /eqP; intro EQ.
apply (first_job_arrival _ H_valid_arrival_sequence tsk) in EQ ⇒ //.
by rewrite EQ in ARR; lia.
}
move : H_task_respects_periodic_model ⇒ [j' [ARR' [IND' [TSK' ARRIVAL']]]].
specialize (IHn j'); feed_n 3 IHn ⇒ //; first by rewrite ARR in ARRIVAL'; lia.
rewrite IHn in IND'.
destruct (PeanoNat.Nat.zero_or_succ (job_index arr_seq j)) as [Z | [m SUCC]]; last by lia.
rewrite (first_job_arrival arr_seq _ tsk)// in ARR.
by lia.
Qed.
End PeriodicArrivalTimes.