Library probsa.probability.stochastic_order
(* -------------------------------- Coq-Proba ------------------------------- *)
From discprob.prob Require Export indep.
(* ---------------------------------- Prosa --------------------------------- *)
Require Export prosa.util.all.
(* --------------------------------- ProBsa --------------------------------- *)
From probsa.util Require Export bigop iota.
From probsa.probability Require Export conditional dominance_relation.
(* ---------------------------------- Main ---------------------------------- *)
From discprob.prob Require Export indep.
(* ---------------------------------- Prosa --------------------------------- *)
Require Export prosa.util.all.
(* --------------------------------- ProBsa --------------------------------- *)
From probsa.util Require Export bigop iota.
From probsa.probability Require Export conditional dominance_relation.
(* ---------------------------------- Main ---------------------------------- *)
Remark: This file is not needed for the proof of the theorem about
adequacy of the axiomatic pWCET.
Section BasicLemmas.
Context {Ω} {μ : measure Ω}.
Variables (X Y : nrvar μ).
Hypothesis H_independent : indep2 X Y.
Lemma addrv_comm :
∀ ω, (X ⟨+⟩ Y) ω = (Y ⟨+⟩ X) ω.
End BasicLemmas.
Section StochasticDomination.
Section AddrvRespectsStochasticOrderHelpers.
Context {Ω Ω'} {μ : measure Ω} {μ' : measure Ω'}.
Variables (t : nat) (X Y : nrvar μ) (X' Y' : nrvar μ').
Hypothesis H_dominates_X : X ⪯ X'.
Hypothesis H_dominates_Y : Y ⪯ Y'.
Hypothesis H_independent : indep2 X Y.
Hypothesis H_independent' : indep2 X' Y'.
End AddrvRespectsStochasticOrderHelpers.
Context {Ω} {μ : measure Ω}.
Variables (X Y : nrvar μ).
Hypothesis H_independent : indep2 X Y.
Lemma addrv_comm :
∀ ω, (X ⟨+⟩ Y) ω = (Y ⟨+⟩ X) ω.
End BasicLemmas.
Section StochasticDomination.
Section AddrvRespectsStochasticOrderHelpers.
Context {Ω Ω'} {μ : measure Ω} {μ' : measure Ω'}.
Variables (t : nat) (X Y : nrvar μ) (X' Y' : nrvar μ').
Hypothesis H_dominates_X : X ⪯ X'.
Hypothesis H_dominates_Y : Y ⪯ Y'.
Hypothesis H_independent : indep2 X Y.
Hypothesis H_independent' : indep2 X' Y'.
End AddrvRespectsStochasticOrderHelpers.
Consider two probability spaces (Ω,μ) and (Ω',μ') and four
random variables X Y : Ω → nat and X' Y' : Ω' → nat. If X and
Y are independent, X' and Y' are independent, and
furthermore, X is stochastically dominated by X' and Y is
stochastically dominated by Y', then the sum of X and Y is
stochastically dominated by the sum of X' and Y'.