Library rt.implementation.global.basic.bertogna_edf_example
Require Import rt.util.all.
Require Import rt.model.arrival.basic.job rt.model.arrival.basic.task rt.model.priority.
Require Import rt.model.schedule.global.schedulability.
Require Import rt.model.schedule.global.basic.schedule rt.model.schedule.global.basic.platform.
Require Import rt.analysis.global.basic.workload_bound
rt.analysis.global.basic.interference_bound_edf
rt.analysis.global.basic.bertogna_edf_comp.
Require Import rt.implementation.job rt.implementation.task
rt.implementation.arrival_sequence.
Require Import rt.implementation.global.basic.schedule.
Module ResponseTimeAnalysisEDF.
Import Job Schedule SporadicTaskset Priority Schedulability Platform InterferenceBoundEDF WorkloadBound ResponseTimeIterationEDF.
Import ConcreteJob ConcreteTask ConcreteArrivalSequence ConcreteScheduler.
Section ExampleRTA.
Let tsk1 := {| task_id := 1; task_cost := 2; task_period := 5; task_deadline := 3|}.
Let tsk2 := {| task_id := 2; task_cost := 4; task_period := 6; task_deadline := 5|}.
Let tsk3 := {| task_id := 3; task_cost := 3; task_period := 12; task_deadline := 11|}.
(* Let ts be a task set containing these three tasks. *)
Program Let ts := Build_set [:: tsk1; tsk2; tsk3] _.
Section FactsAboutTaskset.
Fact ts_has_valid_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
Fact ts_has_constrained_deadlines:
∀ tsk,
tsk \in ts →
task_deadline tsk ≤ task_period tsk.
End FactsAboutTaskset.
(* Assume there are two processors. *)
Let num_cpus := 2.
(* Recall the EDF RTA schedulability test. *)
Let schedulability_test :=
edf_schedulable task_cost task_period task_deadline num_cpus.
Fact schedulability_test_succeeds :
schedulability_test ts = true.
Ltac f :=
unfold edf_rta_iteration; simpl;
unfold edf_response_time_bound, div_floor, total_interference_bound_edf, interference_bound_edf, interference_bound_generic, W; simpl;
repeat rewrite addnE;
repeat rewrite big_cons; repeat rewrite big_nil;
repeat rewrite addnE; simpl;
unfold num_cpus, divn; simpl.
(* Let arr_seq be the periodic arrival sequence from ts. *)
Let arr_seq := periodic_arrival_sequence ts.
(* Let sched be the work-conserving EDF scheduler. *)
Let sched := scheduler job_arrival job_cost num_cpus arr_seq
(JLFP_to_JLDP (EDF job_arrival job_deadline)).
(* Recall the definition of deadline miss. *)
Let no_deadline_missed_by :=
task_misses_no_deadline job_arrival job_cost job_deadline job_task arr_seq sched.
(* Next, we prove that ts is schedulable with the result of the test. *)
Corollary ts_is_schedulable:
∀ tsk,
tsk \in ts →
no_deadline_missed_by tsk.
End ExampleRTA.
End ResponseTimeAnalysisEDF.
Require Import rt.model.arrival.basic.job rt.model.arrival.basic.task rt.model.priority.
Require Import rt.model.schedule.global.schedulability.
Require Import rt.model.schedule.global.basic.schedule rt.model.schedule.global.basic.platform.
Require Import rt.analysis.global.basic.workload_bound
rt.analysis.global.basic.interference_bound_edf
rt.analysis.global.basic.bertogna_edf_comp.
Require Import rt.implementation.job rt.implementation.task
rt.implementation.arrival_sequence.
Require Import rt.implementation.global.basic.schedule.
Module ResponseTimeAnalysisEDF.
Import Job Schedule SporadicTaskset Priority Schedulability Platform InterferenceBoundEDF WorkloadBound ResponseTimeIterationEDF.
Import ConcreteJob ConcreteTask ConcreteArrivalSequence ConcreteScheduler.
Section ExampleRTA.
Let tsk1 := {| task_id := 1; task_cost := 2; task_period := 5; task_deadline := 3|}.
Let tsk2 := {| task_id := 2; task_cost := 4; task_period := 6; task_deadline := 5|}.
Let tsk3 := {| task_id := 3; task_cost := 3; task_period := 12; task_deadline := 11|}.
(* Let ts be a task set containing these three tasks. *)
Program Let ts := Build_set [:: tsk1; tsk2; tsk3] _.
Section FactsAboutTaskset.
Fact ts_has_valid_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
Fact ts_has_constrained_deadlines:
∀ tsk,
tsk \in ts →
task_deadline tsk ≤ task_period tsk.
End FactsAboutTaskset.
(* Assume there are two processors. *)
Let num_cpus := 2.
(* Recall the EDF RTA schedulability test. *)
Let schedulability_test :=
edf_schedulable task_cost task_period task_deadline num_cpus.
Fact schedulability_test_succeeds :
schedulability_test ts = true.
Ltac f :=
unfold edf_rta_iteration; simpl;
unfold edf_response_time_bound, div_floor, total_interference_bound_edf, interference_bound_edf, interference_bound_generic, W; simpl;
repeat rewrite addnE;
repeat rewrite big_cons; repeat rewrite big_nil;
repeat rewrite addnE; simpl;
unfold num_cpus, divn; simpl.
(* Let arr_seq be the periodic arrival sequence from ts. *)
Let arr_seq := periodic_arrival_sequence ts.
(* Let sched be the work-conserving EDF scheduler. *)
Let sched := scheduler job_arrival job_cost num_cpus arr_seq
(JLFP_to_JLDP (EDF job_arrival job_deadline)).
(* Recall the definition of deadline miss. *)
Let no_deadline_missed_by :=
task_misses_no_deadline job_arrival job_cost job_deadline job_task arr_seq sched.
(* Next, we prove that ts is schedulable with the result of the test. *)
Corollary ts_is_schedulable:
∀ tsk,
tsk \in ts →
no_deadline_missed_by tsk.
End ExampleRTA.
End ResponseTimeAnalysisEDF.