Library rt.model.apa.interference
Require Import rt.util.all rt.util.divround.
Require Import rt.model.apa.task rt.model.apa.job rt.model.apa.schedule
rt.model.apa.priority rt.model.apa.workload rt.model.apa.affinity.
Module Interference.
Import Schedule ScheduleOfSporadicTask Priority Workload Affinity.
(* In this section, we define the notion of a possible interfering task. *)
Section PossibleInterferingTasks.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
(* Consider an APA platform with affinity alpha. *)
Context {num_cpus: nat}.
Variable alpha: task_affinity sporadic_task num_cpus.
Section FP.
(* Assume an FP policy. *)
Variable higher_eq_priority: FP_policy sporadic_task.
(* Let tsk be the task to be analyzed ... *)
Variable tsk: sporadic_task.
(* ...assuming a subaffinity alpha'. *)
Variable alpha': affinity num_cpus.
(* Let tsk_other be another task. *)
Variable tsk_other: sporadic_task.
(* Under FP scheduling with constrained deadlines, tsk_other can only interfere
with tsk if it is a different task with higher or equal priority and
intersecting affinity. *)
Definition higher_priority_task_in :=
higher_eq_priority tsk_other tsk ∧
(tsk_other ≠ tsk) ∧
affinity_intersects alpha' (alpha tsk_other).
End FP.
Section JLFP.
(* Let tsk be the task to be analyzed ... *)
Variable tsk: sporadic_task.
(* ...assuming a subaffinity alpha'. *)
Variable alpha': affinity num_cpus.
(* Let tsk_other be another task. *)
Variable tsk_other: sporadic_task.
(* Under JLFP/JLDP scheduling with constrained deadlines, tsk_other can only interfere
with tsk if it is a different task with intersecting affinity. *)
Definition different_task_in :=
(tsk_other ≠ tsk) ∧
affinity_intersects alpha' (alpha tsk_other).
End JLFP.
End PossibleInterferingTasks.
Section InterferenceDefs.
Context {sporadic_task: eqType}.
Context {Job: eqType}.
Variable job_cost: Job → time.
Variable job_task: Job → sporadic_task.
(* Assume any job arrival sequence...*)
Context {arr_seq: arrival_sequence Job}.
(* ... and any schedule. *)
Context {num_cpus: nat}.
Variable sched: schedule num_cpus arr_seq.
(* Assume that every job at any time has a processor affinity alpha. *)
Variable alpha: task_affinity sporadic_task num_cpus.
(* Consider any job j that incurs interference. *)
Variable j: JobIn arr_seq.
(* Recall the definition of backlogged (pending and not scheduled). *)
Let job_is_backlogged (t: time) := backlogged job_cost sched j t.
(* First, we define total interference. *)
Section TotalInterference.
(* The total interference incurred by job j during t1, t2) is the cumulative time in which j is backlogged in this interval. *)
Definition total_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2) job_is_backlogged t.
End TotalInterference.
(* Next, we define job interference. *)
Section JobInterference.
(* Let job_other be a job that interferes with j. *)
Variable job_other: JobIn arr_seq.
(* The interference caused by job_other during t1, t2) is the cumulative time in which j is backlogged while job_other is scheduled. *)
Definition job_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t ∧
can_execute_on alpha (job_task j) cpu ∧
scheduled_on sched job_other cpu t).
End JobInterference.
(* Next, we define task interference. *)
Section TaskInterference.
(* Consider any interfering task tsk_other. *)
Variable tsk_other: sporadic_task.
(* The interference caused by tsk during t1, t2) is the cumulative time in which j is backlogged while tsk is scheduled. *)
Definition task_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t ∧
can_execute_on alpha (job_task j) cpu ∧
task_scheduled_on job_task sched tsk_other cpu t).
End TaskInterference.
(* Next, we define an approximation of the total interference based on
each per-task interference. *)
Section TaskInterferenceJobList.
Variable tsk_other: sporadic_task.
Definition task_interference_joblist (t1 t2: time) :=
\sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j = tsk_other)
job_interference j t1 t2.
End TaskInterferenceJobList.
(* Now we prove some basic lemmas about interference. *)
Section BasicLemmas.
(* Total interference cannot be larger than the considered time window. *)
Lemma total_interference_le_delta :
∀ t1 t2,
total_interference t1 t2 ≤ t2 - t1.
(* Job interference is bounded by the service of the interfering job. *)
Lemma job_interference_le_service :
∀ j_other t1 t2,
job_interference j_other t1 t2 ≤ service_during sched j_other t1 t2.
(* Task interference is bounded by the workload of the interfering task. *)
Lemma task_interference_le_workload :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ workload job_task sched tsk t1 t2.
End BasicLemmas.
(* Now we prove some bounds on interference for sequential jobs. *)
Section InterferenceNoParallelism.
(* If jobs are sequential, ... *)
Hypothesis H_sequential_jobs: sequential_jobs sched.
(* ... then the interference incurred by a job in an interval
of length delta is at most delta. *)
Lemma job_interference_le_delta :
∀ j_other t1 delta,
job_interference j_other t1 (t1 + delta) ≤ delta.
End InterferenceNoParallelism.
(* Next, we show that the cumulative per-task interference bounds the total
interference. *)
Section BoundUsingPerTaskInterference.
Lemma interference_le_interference_joblist :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ task_interference_joblist tsk t1 t2.
End BoundUsingPerTaskInterference.
End InterferenceDefs.
End Interference.
Require Import rt.model.apa.task rt.model.apa.job rt.model.apa.schedule
rt.model.apa.priority rt.model.apa.workload rt.model.apa.affinity.
Module Interference.
Import Schedule ScheduleOfSporadicTask Priority Workload Affinity.
(* In this section, we define the notion of a possible interfering task. *)
Section PossibleInterferingTasks.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
(* Consider an APA platform with affinity alpha. *)
Context {num_cpus: nat}.
Variable alpha: task_affinity sporadic_task num_cpus.
Section FP.
(* Assume an FP policy. *)
Variable higher_eq_priority: FP_policy sporadic_task.
(* Let tsk be the task to be analyzed ... *)
Variable tsk: sporadic_task.
(* ...assuming a subaffinity alpha'. *)
Variable alpha': affinity num_cpus.
(* Let tsk_other be another task. *)
Variable tsk_other: sporadic_task.
(* Under FP scheduling with constrained deadlines, tsk_other can only interfere
with tsk if it is a different task with higher or equal priority and
intersecting affinity. *)
Definition higher_priority_task_in :=
higher_eq_priority tsk_other tsk ∧
(tsk_other ≠ tsk) ∧
affinity_intersects alpha' (alpha tsk_other).
End FP.
Section JLFP.
(* Let tsk be the task to be analyzed ... *)
Variable tsk: sporadic_task.
(* ...assuming a subaffinity alpha'. *)
Variable alpha': affinity num_cpus.
(* Let tsk_other be another task. *)
Variable tsk_other: sporadic_task.
(* Under JLFP/JLDP scheduling with constrained deadlines, tsk_other can only interfere
with tsk if it is a different task with intersecting affinity. *)
Definition different_task_in :=
(tsk_other ≠ tsk) ∧
affinity_intersects alpha' (alpha tsk_other).
End JLFP.
End PossibleInterferingTasks.
Section InterferenceDefs.
Context {sporadic_task: eqType}.
Context {Job: eqType}.
Variable job_cost: Job → time.
Variable job_task: Job → sporadic_task.
(* Assume any job arrival sequence...*)
Context {arr_seq: arrival_sequence Job}.
(* ... and any schedule. *)
Context {num_cpus: nat}.
Variable sched: schedule num_cpus arr_seq.
(* Assume that every job at any time has a processor affinity alpha. *)
Variable alpha: task_affinity sporadic_task num_cpus.
(* Consider any job j that incurs interference. *)
Variable j: JobIn arr_seq.
(* Recall the definition of backlogged (pending and not scheduled). *)
Let job_is_backlogged (t: time) := backlogged job_cost sched j t.
(* First, we define total interference. *)
Section TotalInterference.
(* The total interference incurred by job j during t1, t2) is the cumulative time in which j is backlogged in this interval. *)
Definition total_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2) job_is_backlogged t.
End TotalInterference.
(* Next, we define job interference. *)
Section JobInterference.
(* Let job_other be a job that interferes with j. *)
Variable job_other: JobIn arr_seq.
(* The interference caused by job_other during t1, t2) is the cumulative time in which j is backlogged while job_other is scheduled. *)
Definition job_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t ∧
can_execute_on alpha (job_task j) cpu ∧
scheduled_on sched job_other cpu t).
End JobInterference.
(* Next, we define task interference. *)
Section TaskInterference.
(* Consider any interfering task tsk_other. *)
Variable tsk_other: sporadic_task.
(* The interference caused by tsk during t1, t2) is the cumulative time in which j is backlogged while tsk is scheduled. *)
Definition task_interference (t1 t2: time) :=
\sum_(t1 ≤ t < t2)
\sum_(cpu < num_cpus)
(job_is_backlogged t ∧
can_execute_on alpha (job_task j) cpu ∧
task_scheduled_on job_task sched tsk_other cpu t).
End TaskInterference.
(* Next, we define an approximation of the total interference based on
each per-task interference. *)
Section TaskInterferenceJobList.
Variable tsk_other: sporadic_task.
Definition task_interference_joblist (t1 t2: time) :=
\sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j = tsk_other)
job_interference j t1 t2.
End TaskInterferenceJobList.
(* Now we prove some basic lemmas about interference. *)
Section BasicLemmas.
(* Total interference cannot be larger than the considered time window. *)
Lemma total_interference_le_delta :
∀ t1 t2,
total_interference t1 t2 ≤ t2 - t1.
(* Job interference is bounded by the service of the interfering job. *)
Lemma job_interference_le_service :
∀ j_other t1 t2,
job_interference j_other t1 t2 ≤ service_during sched j_other t1 t2.
(* Task interference is bounded by the workload of the interfering task. *)
Lemma task_interference_le_workload :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ workload job_task sched tsk t1 t2.
End BasicLemmas.
(* Now we prove some bounds on interference for sequential jobs. *)
Section InterferenceNoParallelism.
(* If jobs are sequential, ... *)
Hypothesis H_sequential_jobs: sequential_jobs sched.
(* ... then the interference incurred by a job in an interval
of length delta is at most delta. *)
Lemma job_interference_le_delta :
∀ j_other t1 delta,
job_interference j_other t1 (t1 + delta) ≤ delta.
End InterferenceNoParallelism.
(* Next, we show that the cumulative per-task interference bounds the total
interference. *)
Section BoundUsingPerTaskInterference.
Lemma interference_le_interference_joblist :
∀ tsk t1 t2,
task_interference tsk t1 t2 ≤ task_interference_joblist tsk t1 t2.
End BoundUsingPerTaskInterference.
End InterferenceDefs.
End Interference.