Library rt.util.sum
Require Import rt.util.tactics rt.util.notation rt.util.sorting rt.util.nat.
(* Lemmas about arithmetic with sums. *)
Section SumArithmetic.
(* Inequality with sums is monotonic with their functions. *)
Lemma sum_diff_monotonic :
∀ n G F,
(∀ i : nat, i < n → G i ≤ F i) →
(\sum_(0 ≤ i < n) (G i)) ≤ (\sum_(0 ≤ i < n) (F i)).
Lemma sum_diff :
∀ n F G,
(∀ i (LT: i < n), F i ≥ G i) →
\sum_(0 ≤ i < n) (F i - G i) =
(\sum_(0 ≤ i < n) (F i)) - (\sum_(0 ≤ i < n) (G i)).
Lemma telescoping_sum :
∀ (T: Type) (F: T→nat) r (x0: T),
(∀ i, i < (size r).-1 → F (nth x0 r i) ≤ F (nth x0 r i.+1)) →
F (nth x0 r (size r).-1) - F (nth x0 r 0) =
\sum_(0 ≤ i < (size r).-1) (F (nth x0 r (i.+1)) - F (nth x0 r i)).
Lemma leq_sum_sub_uniq :
∀ (T: eqType) (r1 r2: seq T) F,
uniq r1 →
{subset r1 ≤ r2} →
\sum_(i <- r1) F i ≤ \sum_(i <- r2) F i.
End SumArithmetic.
(* Additional lemmas about sum and max big operators. *)
Section ExtraLemmasSumMax.
Lemma leq_big_max I r (P : pred I) (E1 E2 : I → nat) :
(∀ i, P i → E1 i ≤ E2 i) →
\max_(i <- r | P i) E1 i ≤ \max_(i <- r | P i) E2 i.
Lemma sum_nat_eq0_nat (T : eqType) (F : T → nat) (r: seq T) :
all (fun x ⇒ F x = 0) r = (\sum_(i <- r) F i = 0).
Lemma extend_sum :
∀ t1 t2 t1' t2' F,
t1' ≤ t1 →
t2 ≤ t2' →
\sum_(t1 ≤ t < t2) F t ≤ \sum_(t1' ≤ t < t2') F t.
Lemma leq_sum_nat m n (P : pred nat) (E1 E2 : nat → nat) :
(∀ i, m ≤ i < n → P i → E1 i ≤ E2 i) →
\sum_(m ≤ i < n | P i) E1 i ≤ \sum_(m ≤ i < n | P i) E2 i.
Lemma leq_sum_seq (I: eqType) (r: seq I) (P : pred I) (E1 E2 : I → nat) :
(∀ i, i ∈ r → P i → E1 i ≤ E2 i) →
\sum_(i <- r | P i) E1 i ≤ \sum_(i <- r | P i) E2 i.
End ExtraLemmasSumMax.
(* Lemmas about arithmetic with sums. *)
Section SumArithmetic.
(* Inequality with sums is monotonic with their functions. *)
Lemma sum_diff_monotonic :
∀ n G F,
(∀ i : nat, i < n → G i ≤ F i) →
(\sum_(0 ≤ i < n) (G i)) ≤ (\sum_(0 ≤ i < n) (F i)).
Lemma sum_diff :
∀ n F G,
(∀ i (LT: i < n), F i ≥ G i) →
\sum_(0 ≤ i < n) (F i - G i) =
(\sum_(0 ≤ i < n) (F i)) - (\sum_(0 ≤ i < n) (G i)).
Lemma telescoping_sum :
∀ (T: Type) (F: T→nat) r (x0: T),
(∀ i, i < (size r).-1 → F (nth x0 r i) ≤ F (nth x0 r i.+1)) →
F (nth x0 r (size r).-1) - F (nth x0 r 0) =
\sum_(0 ≤ i < (size r).-1) (F (nth x0 r (i.+1)) - F (nth x0 r i)).
Lemma leq_sum_sub_uniq :
∀ (T: eqType) (r1 r2: seq T) F,
uniq r1 →
{subset r1 ≤ r2} →
\sum_(i <- r1) F i ≤ \sum_(i <- r2) F i.
End SumArithmetic.
(* Additional lemmas about sum and max big operators. *)
Section ExtraLemmasSumMax.
Lemma leq_big_max I r (P : pred I) (E1 E2 : I → nat) :
(∀ i, P i → E1 i ≤ E2 i) →
\max_(i <- r | P i) E1 i ≤ \max_(i <- r | P i) E2 i.
Lemma sum_nat_eq0_nat (T : eqType) (F : T → nat) (r: seq T) :
all (fun x ⇒ F x = 0) r = (\sum_(i <- r) F i = 0).
Lemma extend_sum :
∀ t1 t2 t1' t2' F,
t1' ≤ t1 →
t2 ≤ t2' →
\sum_(t1 ≤ t < t2) F t ≤ \sum_(t1' ≤ t < t2') F t.
Lemma leq_sum_nat m n (P : pred nat) (E1 E2 : nat → nat) :
(∀ i, m ≤ i < n → P i → E1 i ≤ E2 i) →
\sum_(m ≤ i < n | P i) E1 i ≤ \sum_(m ≤ i < n | P i) E2 i.
Lemma leq_sum_seq (I: eqType) (r: seq I) (P : pred I) (E1 E2 : I → nat) :
(∀ i, i ∈ r → P i → E1 i ≤ E2 i) →
\sum_(i <- r | P i) E1 i ≤ \sum_(i <- r | P i) E2 i.
End ExtraLemmasSumMax.