Library rt.analysis.basic.interference_bound_edf
Require Import rt.util.all.
Require Import rt.model.basic.task rt.model.basic.job rt.model.basic.schedule
rt.model.basic.task_arrival rt.model.basic.platform rt.model.basic.response_time
rt.model.basic.workload rt.model.basic.priority rt.model.basic.schedulability
rt.model.basic.interference rt.model.basic.interference_edf.
Require Import rt.analysis.basic.workload_bound rt.analysis.basic.interference_bound.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div path.
Module InterferenceBoundEDF.
Import Job SporadicTaskset Schedule ScheduleOfSporadicTask Schedulability
WorkloadBound ResponseTime Priority
SporadicTaskArrival Interference InterferenceEDF.
Export InterferenceBoundGeneric.
(* In this section, we define Bertogna and Cirinei's EDF-specific
interference bound. *)
Section SpecificBoundDef.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
(* Let tsk be the task to be analyzed. *)
Variable tsk: sporadic_task.
(* Consider the interference incurred by tsk in a window of length delta... *)
Variable delta: time.
(* ... due to a different task tsk_other, with response-time bound R_other. *)
Variable tsk_other: sporadic_task.
Variable R_other: time.
(* Bertogna and Cirinei define the following bound for task interference
under EDF scheduling. *)
Definition edf_specific_interference_bound :=
let d_tsk := task_deadline tsk in
let e_other := task_cost tsk_other in
let p_other := task_period tsk_other in
let d_other := task_deadline tsk_other in
(div_floor d_tsk p_other) × e_other +
minn e_other ((d_tsk %% p_other) - (d_other - R_other)).
End SpecificBoundDef.
(* Next, we define the total interference bound for EDF, which combines the generic
and the EDF-specific bounds. *)
Section TotalInterferenceBoundEDF.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
(* Let tsk be the task to be analyzed. *)
Variable tsk: sporadic_task.
Let task_with_response_time := (sporadic_task × time)%type.
(* Assume a known response-time bound for each interfering task ... *)
Variable R_prev: seq task_with_response_time.
(* ... and an interval length delta. *)
Variable delta: time.
Section RecallInterferenceBounds.
Variable tsk_R: task_with_response_time.
Let tsk_other := fst tsk_R.
Let R_other := snd tsk_R.
(* By combining Bertogna's interference bound for a work-conserving
scheduler ... *)
Let basic_interference_bound := interference_bound_generic task_cost task_period tsk delta tsk_R.
(* ... with and EDF-specific interference bound, ... *)
Let edf_specific_bound := edf_specific_interference_bound task_cost task_period task_deadline tsk tsk_other R_other.
(* ... Bertogna and Cirinei define the following interference bound
under EDF scheduling. *)
Definition interference_bound_edf :=
minn basic_interference_bound edf_specific_bound.
End RecallInterferenceBounds.
(* Next we define the computation of the total interference for APA scheduling. *)
Section TotalInterference.
(* Let other_task denote tasks different from tsk. *)
Let other_task := different_task tsk.
(* The total interference incurred by tsk is bounded by the sum
of individual task interferences of the other tasks. *)
Definition total_interference_bound_edf :=
\sum_((tsk_other, R_other) <- R_prev | other_task tsk_other)
interference_bound_edf (tsk_other, R_other).
End TotalInterference.
End TotalInterferenceBoundEDF.
(* In this section, we show that the EDF-specific interference bound is safe. *)
Section ProofSpecificBound.
Import Schedule Interference Platform SporadicTaskset.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
Context {Job: eqType}.
Variable job_cost: Job → time.
Variable job_deadline: Job → time.
Variable job_task: Job → sporadic_task.
(* Assume any job arrival sequence... *)
Context {arr_seq: arrival_sequence Job}.
(* ... in which jobs arrive sporadically and have valid parameters. *)
Hypothesis H_sporadic_tasks:
sporadic_task_model task_period arr_seq job_task.
Hypothesis H_valid_job_parameters:
∀ (j: JobIn arr_seq),
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
(* Consider any schedule such that...*)
Variable num_cpus: nat.
Variable sched: schedule num_cpus arr_seq.
(* ...jobs do not execute before their arrival times nor longer
than their execution costs. *)
Hypothesis H_jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost sched.
(* Also assume that jobs are sequential and that there exists at
least one processor. *)
Hypothesis H_sequential_jobs: sequential_jobs sched.
Hypothesis H_at_least_one_cpu: num_cpus > 0.
(* Consider a task set ts where all jobs come from the task set
and tasks have valid parameters and constrained deadlines. *)
Variable ts: taskset_of sporadic_task.
Hypothesis all_jobs_from_taskset:
∀ (j: JobIn arr_seq), job_task j ∈ ts.
Hypothesis H_valid_task_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
Hypothesis H_constrained_deadlines:
∀ tsk, tsk ∈ ts → task_deadline tsk ≤ task_period tsk.
Let no_deadline_is_missed_by_tsk (tsk: sporadic_task) :=
task_misses_no_deadline job_cost job_deadline job_task sched tsk.
Let response_time_bounded_by (tsk: sporadic_task) :=
is_response_time_bound_of_task job_cost job_task tsk sched.
(* Assume that the scheduler is a work-conserving EDF scheduler. *)
Hypothesis H_work_conserving: work_conserving job_cost sched.
Hypothesis H_edf_scheduler:
enforces_JLDP_policy job_cost sched (EDF job_deadline).
(* Let tsk_i be the task to be analyzed, ...*)
Variable tsk_i: sporadic_task.
Hypothesis H_tsk_i_in_task_set: tsk_i ∈ ts.
(* ... and j_i one of its jobs. *)
Variable j_i: JobIn arr_seq.
Hypothesis H_job_of_tsk_i: job_task j_i = tsk_i.
(* Let tsk_k denote any interfering task, ... *)
Variable tsk_k: sporadic_task.
Hypothesis H_tsk_k_in_task_set: tsk_k ∈ ts.
(* ...and R_k its response-time bound. *)
Variable R_k: time.
Hypothesis H_R_k_le_deadline: R_k ≤ task_deadline tsk_k.
(* Consider a time window of length delta <= D_i, starting with j_i's arrival time. *)
Variable delta: time.
Hypothesis H_delta_le_deadline: delta ≤ task_deadline tsk_i.
(* Assume that the jobs of tsk_k satisfy the response-time bound before the end of the interval *)
Hypothesis H_all_previous_jobs_completed_on_time :
∀ (j_k: JobIn arr_seq),
job_task j_k = tsk_k →
job_arrival j_k + R_k < job_arrival j_i + delta →
completed job_cost sched j_k (job_arrival j_k + R_k).
(* In this section, we prove that Bertogna and Cirinei's EDF interference bound
indeed bounds the interference caused by task tsk_k in the interval t1, t1 + delta). *)
Section MainProof.
(* Let's call x the task interference incurred by job j due to tsk_k. *)
Let x :=
task_interference job_cost job_task sched j_i tsk_k
(job_arrival j_i) (job_arrival j_i + delta).
(* Also, recall the EDF-specific interference bound for EDF. *)
Let interference_bound :=
edf_specific_interference_bound task_cost task_period task_deadline tsk_i tsk_k R_k.
(* Let's simplify the names a bit. *)
Let t1 := job_arrival j_i.
Let t2 := job_arrival j_i + delta.
Let D_i := task_deadline tsk_i.
Let D_k := task_deadline tsk_k.
Let p_k := task_period tsk_k.
Let n_k := div_floor D_i p_k.
(* Let's give a simpler name to job interference. *)
Let interference_caused_by := job_interference job_cost sched j_i.
(* Identify the subset of jobs that actually cause interference *)
Let interfering_jobs :=
filter (fun (x: JobIn arr_seq) ⇒
(job_task x = tsk_k) ∧ (interference_caused_by x t1 t2 ≠ 0))
(jobs_scheduled_between sched t1 t2).
(* Now, consider the list of interfering jobs sorted by arrival time. *)
Let earlier_arrival := fun (x y: JobIn arr_seq) ⇒ job_arrival x ≤ job_arrival y.
Let sorted_jobs := (sort earlier_arrival interfering_jobs).
(* Now we proceed with the proof. The first step consists in simplifying the sum corresponding to the workload. *)
Section SimplifyJobSequence.
(* Use the alternative definition of task interference, based on
individual job interference. *)
Lemma interference_bound_edf_use_another_definition :
x ≤ \sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j = tsk_k)
interference_caused_by j t1 t2.
Proof.
apply interference_le_interference_joblist.
Qed.
(* Remove the elements that we don't care about from the sum *)
Lemma interference_bound_edf_simpl_by_filtering_interfering_jobs :
\sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j = tsk_k)
interference_caused_by j t1 t2 =
\sum_(j <- interfering_jobs) interference_caused_by j t1 t2.
Proof.
unfold interfering_jobs; rewrite big_filter.
rewrite big_mkcond; rewrite [\sum_(_ <- _ | _) _]big_mkcond /=.
apply eq_bigr; intros i _; clear -i.
destruct (job_task i = tsk_k); rewrite ?andTb ?andFb; last by done.
destruct (interference_caused_by i t1 t2 ≠ 0) eqn:DIFF; first by done.
by apply negbT in DIFF; rewrite negbK in DIFF; apply/eqP.
Qed.
(* Then, we consider the sum over the sorted sequence of jobs. *)
Lemma interference_bound_edf_simpl_by_sorting_interfering_jobs :
\sum_(j <- interfering_jobs) interference_caused_by j t1 t2 =
\sum_(j <- sorted_jobs) interference_caused_by j t1 t2.
Proof.
by rewrite (eq_big_perm sorted_jobs) /=; last by rewrite -(perm_sort earlier_arrival).
Qed.
(* Note that both sequences have the same set of elements. *)
Lemma interference_bound_edf_job_in_same_sequence :
∀ j,
(j ∈ interfering_jobs) = (j ∈ sorted_jobs).
Proof.
by apply perm_eq_mem; rewrite -(perm_sort earlier_arrival).
Qed.
(* Also recall that all jobs in the sorted sequence is an interfering job of tsk_k, ... *)
Lemma interference_bound_edf_all_jobs_from_tsk_k :
∀ j,
j ∈ sorted_jobs →
job_task j = tsk_k ∧
interference_caused_by j t1 t2 ≠ 0 ∧
j ∈ jobs_scheduled_between sched t1 t2.
Proof.
intros j LT.
rewrite -interference_bound_edf_job_in_same_sequence mem_filter in LT.
by move: LT ⇒ /andP [/andP [/eqP JOBi SERVi] INi]; repeat split.
Qed.
(* ...and consecutive jobs are ordered by arrival. *)
Lemma interference_bound_edf_jobs_ordered_by_arrival :
∀ i elem,
i < (size sorted_jobs).-1 →
earlier_arrival (nth elem sorted_jobs i) (nth elem sorted_jobs i.+1).
Proof.
intros i elem LT.
assert (SORT: sorted earlier_arrival sorted_jobs).
by apply sort_sorted; unfold total, earlier_arrival; ins; apply leq_total.
by destruct sorted_jobs; simpl in *; [by rewrite ltn0 in LT | by apply/pathP].
Qed.
(* Finally, for any job of task tsk_k, the interference is bounded by the task cost. *)
Lemma interference_bound_edf_interference_le_task_cost :
∀ j,
j ∈ interfering_jobs →
interference_caused_by j t1 t2 ≤ task_cost tsk_k.
Proof.
rename H_valid_job_parameters into PARAMS.
intros j; rewrite mem_filter; move ⇒ /andP [/andP [/eqP JOBj _] _].
specialize (PARAMS j); des.
apply leq_trans with (n := service_during sched j t1 t2);
first by apply job_interference_le_service.
by apply cumulative_service_le_task_cost with (job_task0 := job_task)
(task_deadline0 := task_deadline) (job_cost0 := job_cost)
(job_deadline0 := job_deadline).
Qed.
End SimplifyJobSequence.
(* Next, we show that if the number of jobs is no larger than n_k,
the workload bound trivially holds. *)
Section InterferenceFewJobs.
Hypothesis H_few_jobs: size sorted_jobs ≤ n_k.
Lemma interference_bound_edf_holds_for_at_most_n_k_jobs :
\sum_(j <- sorted_jobs) interference_caused_by j t1 t2 ≤
interference_bound.
Proof.
rewrite -[\sum_(_ <- _ | _) _]addn0 leq_add //.
apply leq_trans with (n := \sum_(x <- sorted_jobs) task_cost tsk_k);
last by rewrite big_const_seq iter_addn addn0 mulnC leq_mul2r; apply/orP; right.
{
rewrite [\sum_(_ <- _) interference_caused_by _ _ _]big_seq_cond.
rewrite [\sum_(_ <- _) task_cost _]big_seq_cond.
apply leq_sum; intros i; move/andP ⇒ [INi _].
rewrite -interference_bound_edf_job_in_same_sequence in INi.
by apply interference_bound_edf_interference_le_task_cost.
}
Qed.
End InterferenceFewJobs.
(* Otherwise, assume that the number of jobs is larger than n_k >= 0. *)
Section InterferenceManyJobs.
Hypothesis H_many_jobs: n_k < size sorted_jobs.
(* This trivially implies that there's at least one job. *)
Lemma interference_bound_edf_at_least_one_job: size sorted_jobs > 0.
Proof.
by apply leq_ltn_trans with (n := n_k).
Qed.
(* Let j_fst be the first job, and a_fst its arrival time. *)
Variable elem: JobIn arr_seq.
Let j_fst := nth elem sorted_jobs 0.
Let a_fst := job_arrival j_fst.
(* In this section, we prove some basic lemmas about j_fst. *)
Section FactsAboutFirstJob.
(* The first job is an interfering job of task tsk_k. *)
Lemma interference_bound_edf_j_fst_is_job_of_tsk_k :
job_task j_fst = tsk_k ∧
interference_caused_by j_fst t1 t2 ≠ 0 ∧
j_fst ∈ jobs_scheduled_between sched t1 t2.
Proof.
by apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth,
interference_bound_edf_at_least_one_job.
Qed.
(* The deadline of j_fst is the deadline of tsk_k. *)
Lemma interference_bound_edf_j_fst_deadline :
job_deadline j_fst = task_deadline tsk_k.
Proof.
unfold valid_sporadic_job in ×.
rename H_valid_job_parameters into PARAMS.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTtask _].
by specialize (PARAMS j_fst); des; rewrite PARAMS1 FSTtask.
Qed.
(* The deadline of j_i is the deadline of tsk_i. *)
Lemma interference_bound_edf_j_i_deadline :
job_deadline j_i = task_deadline tsk_i.
Proof.
unfold valid_sporadic_job in ×.
rename H_valid_job_parameters into PARAMS,
H_job_of_tsk_i into JOBtsk.
by specialize (PARAMS j_i); des; rewrite PARAMS1 JOBtsk.
Qed.
(* If j_fst completes by its response-time bound, then t1 <= a_fst + R_k,
where t1 is the beginning of the time window (arrival of j_i). *)
Lemma interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval :
completed job_cost sched j_fst (a_fst + R_k) →
t1 ≤ a_fst + R_k.
Proof.
intros RBOUND.
rewrite leqNgt; apply/negP; unfold not; intro BUG.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [_ [ FSTserv _]].
move: FSTserv ⇒ /negP FSTserv; apply FSTserv.
rewrite -leqn0; apply leq_trans with (n := service_during sched j_fst t1 t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP.
by apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k);
try (by done); apply ltnW.
Qed.
End FactsAboutFirstJob.
(* Now, let's prove the interference bound for the particular case of a single job.
This case must be solved separately because the single job can simultaneously
be carry-in and carry-out job, so its response time is not necessarily
bounded by R_k (from the hypothesis H_all_previous_jobs_completed_on_time). *)
Section InterferenceSingleJob.
(* Assume that there's at least one job in the sorted list. *)
Hypothesis H_only_one_job: size sorted_jobs = 1.
(* Since there's only one job, we simplify the terms in the interference bound. *)
Lemma interference_bound_edf_simpl_when_there's_one_job :
D_i %% p_k - (D_k - R_k) = D_i - (D_k - R_k).
Proof.
rename H_many_jobs into NUM,
H_valid_task_parameters into TASK_PARAMS,
H_tsk_k_in_task_set into INk.
unfold valid_sporadic_taskset, is_valid_sporadic_task,
interference_bound, edf_specific_interference_bound in ×.
rewrite H_only_one_job in NUM.
rewrite ltnS leqn0 in NUM; move: NUM ⇒ /eqP EQnk.
move: EQnk ⇒ /eqP EQnk; unfold n_k, div_floor in EQnk.
rewrite -leqn0 leqNgt divn_gt0 in EQnk;
last by specialize (TASK_PARAMS tsk_k INk); des.
by rewrite -ltnNge in EQnk; rewrite modn_small //.
Qed.
(* Next, we show that if j_fst completes by its response-time bound R_k,
then then interference bound holds. *)
Section ResponseTimeOfSingleJobBounded.
Hypothesis H_j_fst_completed_by_rt_bound :
completed job_cost sched j_fst (a_fst + R_k).
Lemma interference_bound_edf_holds_for_single_job_that_completes_on_time :
job_interference job_cost sched j_i j_fst t1 t2 ≤ D_i - (D_k - R_k).
Proof.
rename H_j_fst_completed_by_rt_bound into RBOUND.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval RBOUND.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [_ [ LEdl _]].
apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LEdl; try (by done).
destruct (D_k - R_k ≤ D_i) eqn:LEdk; last first.
{
apply negbT in LEdk; rewrite -ltnNge in LEdk.
apply leq_trans with (n := 0); last by done.
apply leq_trans with (n := job_interference job_cost sched j_i j_fst
(a_fst + R_k) t2).
{
apply extend_sum; last by apply leqnn.
rewrite -(leq_add2r D_i).
rewrite interference_bound_edf_j_fst_deadline
interference_bound_edf_j_i_deadline in LEdl.
apply leq_trans with (n := a_fst + D_k); last by done.
rewrite -addnA leq_add2l.
by apply ltnW; rewrite -ltn_subRL.
}
apply leq_trans with (n := service_during sched j_fst (a_fst + R_k) t2);
first by apply job_interference_le_service.
unfold service_during; rewrite leqn0; apply/eqP.
by apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k);
try (by done); apply leqnn.
}
{
rewrite -(leq_add2r (D_k - R_k)) subh1 // -addnBA // subnn addn0.
assert (SUBST: D_k - R_k = \sum_(a_fst + R_k ≤ i < a_fst + D_k) 1).
{
rewrite big_const_nat iter_addn mul1n addn0.
rewrite addnC -subnBA; last by apply leq_addr.
by rewrite addnC -addnBA // subnn addn0.
}
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst + D_k) + (D_k - R_k)).
{
rewrite leq_add2r.
destruct (t2 ≤ a_fst + R_k) eqn:LEt2.
{
apply extend_sum; first by apply leqnn.
apply leq_trans with (n := a_fst + R_k); first by done.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
{
unfold job_interference.
apply negbT in LEt2; rewrite -ltnNge in LEt2.
rewrite → big_cat_nat with (n := a_fst + R_k);
[simpl | by apply AFTERt1 | by apply ltnW].
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst + R_k) + service_during sched j_fst (a_fst + R_k) t2).
{
rewrite leq_add2l.
by apply job_interference_le_service.
}
unfold service_during.
rewrite → cumulative_service_after_job_rt_zero with
(job_cost0 := job_cost) (R := R_k); try (by done).
rewrite addn0; apply extend_sum; first by apply leqnn.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
}
unfold job_interference.
rewrite → big_cat_nat with (n := a_fst + R_k);
[simpl| by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline].
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst+R_k) + service_during sched j_fst (a_fst+R_k) (a_fst+D_k) + (D_k-R_k)).
{
rewrite leq_add2r leq_add2l.
by apply job_interference_le_service.
}
unfold service_during.
rewrite → cumulative_service_after_job_rt_zero with
(job_cost0 := job_cost) (R:=R_k); try (by done).
rewrite addn0.
apply leq_trans with (n := (\sum_(t1 ≤ t < a_fst + R_k) 1) +
\sum_(a_fst + R_k ≤ t < a_fst + D_k) 1).
{
apply leq_add; last by rewrite SUBST.
rewrite big_const_nat iter_addn mul1n addn0.
rewrite -{1}[a_fst + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
rewrite -big_cat_nat;
[simpl | by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline ].
rewrite big_const_nat iter_addn mul1n addn0 leq_subLR.
by unfold D_i, D_k, t1, a_fst; rewrite -interference_bound_edf_j_fst_deadline
-interference_bound_edf_j_i_deadline.
}
Qed.
End ResponseTimeOfSingleJobBounded.
(* Else, if j_fst did not complete by its response-time bound, then
we need a separate proof. *)
Section ResponseTimeOfSingleJobNotBounded.
Hypothesis H_j_fst_not_complete_by_rt_bound :
¬ completed job_cost sched j_fst (a_fst + R_k).
(* This trivially implies that a_fst + R_k lies after the end of the interval,
otherwise j_fst would have completed by its response-time bound. *)
Lemma interference_bound_edf_response_time_bound_of_j_fst_after_interval :
job_arrival j_fst + R_k ≥ job_arrival j_i + delta.
Proof.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTtask _].
rewrite leqNgt; apply/negP; intro LT.
move: H_j_fst_not_complete_by_rt_bound ⇒ /negP BUG; apply BUG.
by apply H_all_previous_jobs_completed_on_time.
Qed.
(* If the slack is too big (D_i < D_k - R_k), j_fst causes no interference. *)
Lemma interference_bound_edf_holds_for_single_job_with_big_slack :
D_i < D_k - R_k →
interference_caused_by j_fst t1 t2 = 0.
Proof.
intro LTdk.
rewrite ltn_subRL in LTdk.
rewrite -(ltn_add2l a_fst) addnA in LTdk.
apply leq_ltn_trans with (m := t1 + D_i) in LTdk; last first.
{
rewrite leq_add2r.
apply leq_trans with (n := t1 + delta); first by apply leq_addr.
by apply interference_bound_edf_response_time_bound_of_j_fst_after_interval.
}
apply/eqP; rewrite -[_ _ _ _ = 0]negbK; apply/negP; red; intro BUG.
apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in BUG; try (by done).
rewrite interference_bound_edf_j_fst_deadline
interference_bound_edf_j_i_deadline in BUG.
by apply (leq_trans LTdk) in BUG; rewrite ltnn in BUG.
Qed.
(* Else, if the slack is small, j_fst causes interference for no longer than
D_i - (D_k - R_k). *)
Lemma interference_bound_edf_holds_for_single_job_with_small_slack :
D_i ≥ D_k - R_k →
interference_caused_by j_fst t1 t2 ≤ D_i - (D_k - R_k).
Proof.
intro LEdk.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTtask [LEdl _]].
have LTr := interference_bound_edf_response_time_bound_of_j_fst_after_interval.
apply subh3; last by apply LEdk.
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(job_arrival j_fst + R_k) + (D_k - R_k));
first by rewrite leq_add2r; apply extend_sum; [by apply leqnn|].
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 +
\sum_(a_fst + R_k ≤ t < a_fst + D_k)1).
{
apply leq_add.
{
rewrite big_const_nat iter_addn mul1n addn0.
rewrite -{1}[job_arrival j_fst + R_k](addKn t1) -addnBA;
first by apply job_interference_le_delta.
by apply leq_trans with (n := t1 + delta); first by apply leq_addr.
}
rewrite big_const_nat iter_addn mul1n addn0 addnC.
rewrite -subnBA; last by apply leq_addr.
by rewrite addnC -addnBA // subnn addn0.
}
rewrite -big_cat_nat; simpl; last 2 first.
{
apply leq_trans with (n := t1 + delta); first by apply leq_addr.
by apply interference_bound_edf_response_time_bound_of_j_fst_after_interval.
}
by rewrite leq_add2l; apply H_R_k_le_deadline.
rewrite big_const_nat iter_addn mul1n addn0 leq_subLR.
unfold D_i, D_k, t1, a_fst; rewrite -interference_bound_edf_j_fst_deadline
-interference_bound_edf_j_i_deadline.
by apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LEdl.
Qed.
End ResponseTimeOfSingleJobNotBounded.
(* By combining the results above, we prove that the interference caused by the single job
is bounded by D_i - (D_k - R_k), ... *)
Lemma interference_bound_edf_interference_of_j_fst_limited_by_slack :
interference_caused_by j_fst t1 t2 ≤ D_i - (D_k - R_k).
Proof.
destruct (completed job_cost sched j_fst (a_fst + R_k)) eqn:COMP;
first by apply interference_bound_edf_holds_for_single_job_that_completes_on_time.
apply negbT in COMP.
destruct (ltnP D_i (D_k - R_k)) as [LEdk | LTdk].
by rewrite interference_bound_edf_holds_for_single_job_with_big_slack.
by apply interference_bound_edf_holds_for_single_job_with_small_slack.
Qed.
(* ... and thus the interference bound holds. *)
Lemma interference_bound_edf_holds_for_a_single_job :
interference_caused_by j_fst t1 t2 ≤ interference_bound.
Proof.
have ONE := interference_bound_edf_simpl_when_there's_one_job.
have SLACK := interference_bound_edf_interference_of_j_fst_limited_by_slack.
rename H_many_jobs into NUM, H_only_one_job into SIZE.
unfold interference_caused_by, interference_bound, edf_specific_interference_bound.
fold D_i D_k p_k n_k.
rewrite SIZE ltnS leqn0 in NUM; move: NUM ⇒ /eqP EQnk.
rewrite EQnk mul0n add0n.
rewrite leq_min; apply/andP; split.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite SIZE.
}
by rewrite ONE; apply SLACK.
Qed.
End InterferenceSingleJob.
(* Next, consider the other case where there are at least two jobs:
the first job j_fst, and the last job j_lst. *)
Section InterferenceTwoOrMoreJobs.
(* Assume there are at least two jobs. *)
Variable num_mid_jobs: nat.
Hypothesis H_at_least_two_jobs : size sorted_jobs = num_mid_jobs.+2.
(* Let j_lst be the last job of the sequence and a_lst its arrival time. *)
Let j_lst := nth elem sorted_jobs num_mid_jobs.+1.
Let a_lst := job_arrival j_lst.
(* In this section, we prove some basic lemmas about the first and last jobs. *)
Section FactsAboutFirstAndLastJobs.
(* The last job is an interfering job of task tsk_k. *)
Lemma interference_bound_edf_j_lst_is_job_of_tsk_k :
job_task j_lst = tsk_k ∧
interference_caused_by j_lst t1 t2 ≠ 0 ∧
j_lst ∈ jobs_scheduled_between sched t1 t2.
Proof.
apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth.
by rewrite H_at_least_two_jobs.
Qed.
(* The deadline of j_lst is the deadline of tsk_k. *)
Lemma interference_bound_edf_j_lst_deadline :
job_deadline j_lst = task_deadline tsk_k.
Proof.
unfold valid_sporadic_job in ×.
rename H_valid_job_parameters into PARAMS.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [LSTtask _].
by specialize (PARAMS j_lst); des; rewrite PARAMS1 LSTtask.
Qed.
(* The first job arrives before the last job. *)
Lemma interference_bound_edf_j_fst_before_j_lst :
job_arrival j_fst ≤ job_arrival j_lst.
Proof.
rename H_at_least_two_jobs into SIZE.
unfold j_fst, j_lst; rewrite -[num_mid_jobs.+1]add0n.
apply prev_le_next; last by rewrite SIZE leqnn.
by intros i LT; apply interference_bound_edf_jobs_ordered_by_arrival.
Qed.
(* The last job arrives before the end of the interval. *)
Lemma interference_bound_edf_last_job_arrives_before_end_of_interval :
job_arrival j_lst < t2.
Proof.
rewrite leqNgt; apply/negP; unfold not; intro LT2.
exploit interference_bound_edf_all_jobs_from_tsk_k.
{
apply mem_nth; instantiate (1 := num_mid_jobs.+1).
by rewrite -(ltn_add2r 1) addn1 H_at_least_two_jobs addn1.
}
instantiate (1 := elem); move ⇒ [LSTtsk [/eqP LSTserv LSTin]].
apply LSTserv; apply/eqP; rewrite -leqn0.
apply leq_trans with (n := service_during sched j_lst t1 t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP; unfold service_during.
by apply cumulative_service_before_job_arrival_zero.
Qed.
(* Since there are multiple jobs, j_fst is far enough from the end of
the interval that its response-time bound is valid
(by the assumption H_all_previous_jobs_completed_on_time). *)
Lemma interference_bound_edf_j_fst_completed_on_time :
completed job_cost sched j_fst (a_fst + R_k).
Proof.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k; des.
set j_snd := nth elem sorted_jobs 1.
exploit interference_bound_edf_all_jobs_from_tsk_k.
{
by apply mem_nth; instantiate (1 := 1); rewrite H_at_least_two_jobs.
}
instantiate (1 := elem); move ⇒ [SNDtsk [/eqP SNDserv _]].
apply H_all_previous_jobs_completed_on_time; try (by done).
apply leq_ltn_trans with (n := job_arrival j_snd); last first.
{
rewrite ltnNge; apply/negP; red; intro BUG; apply SNDserv.
apply/eqP; rewrite -leqn0; apply leq_trans with (n := service_during
sched j_snd t1 t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP.
by apply cumulative_service_before_job_arrival_zero.
}
apply leq_trans with (n := a_fst + p_k).
{
by rewrite leq_add2l; apply leq_trans with (n := D_k);
[by apply H_R_k_le_deadline | by apply H_constrained_deadlines].
}
(* Since jobs are sporadic, we know that the first job arrives
at least p_k units before the second. *)
unfold p_k; rewrite -FST.
apply H_sporadic_tasks; [| by rewrite SNDtsk | ]; last first.
{
apply interference_bound_edf_jobs_ordered_by_arrival.
by rewrite H_at_least_two_jobs.
}
red; move ⇒ /eqP BUG.
by rewrite nth_uniq in BUG; rewrite ?SIZE //;
[ by apply interference_bound_edf_at_least_one_job
| by rewrite H_at_least_two_jobs
| by rewrite sort_uniq; apply filter_uniq, undup_uniq].
Qed.
End FactsAboutFirstAndLastJobs.
(* Next, we prove that the distance between the first and last jobs is at least
num_mid_jobs + 1 periods. *)
Lemma interference_bound_edf_many_periods_in_between :
a_lst - a_fst ≥ num_mid_jobs.+1 × p_k.
Proof.
unfold a_fst, a_lst, j_fst, j_lst.
assert (EQnk: num_mid_jobs.+1=(size sorted_jobs).-1).
by rewrite H_at_least_two_jobs.
rewrite EQnk telescoping_sum;
last by ins; apply interference_bound_edf_jobs_ordered_by_arrival.
rewrite -[_ × _ tsk_k]addn0 mulnC -iter_addn -{1}[_.-1]subn0 -big_const_nat.
rewrite big_nat_cond [\sum_(0 ≤ i < _)(_-_)]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move ⇒ /andP LT; des.
(* To simplify, call the jobs 'cur' and 'next' *)
set cur := nth elem sorted_jobs i.
set next := nth elem sorted_jobs i.+1.
(* Show that cur arrives earlier than next *)
assert (ARRle: job_arrival cur ≤ job_arrival next).
by unfold cur, next; apply interference_bound_edf_jobs_ordered_by_arrival.
(* Show that both cur and next are in the arrival sequence *)
assert (INnth: cur ∈ interfering_jobs ∧ next ∈ interfering_jobs).
{
rewrite 2!interference_bound_edf_job_in_same_sequence; split.
by apply mem_nth, (ltn_trans LT0); destruct sorted_jobs; ins.
by apply mem_nth; destruct sorted_jobs; ins.
}
rewrite 2?mem_filter in INnth; des.
(* Use the sporadic task model to conclude that cur and next are separated
by at least (task_period tsk) units. Of course this only holds if cur != next.
Since we don't know much about the list (except that it's sorted), we must
also prove that it doesn't contain duplicates. *)
assert (CUR_LE_NEXT: job_arrival cur + task_period (job_task cur) ≤ job_arrival next).
{
apply H_sporadic_tasks; last by ins.
unfold cur, next, not; intro EQ; move: EQ ⇒ /eqP EQ.
rewrite nth_uniq in EQ; first by move: EQ ⇒ /eqP EQ; intuition.
by apply ltn_trans with (n := (size sorted_jobs).-1); destruct sorted_jobs; ins.
by destruct sorted_jobs; ins.
by rewrite sort_uniq -/interfering_jobs filter_uniq // undup_uniq.
by rewrite INnth INnth0.
}
by rewrite subh3 // addnC /p_k -INnth.
Qed.
(* Using the lemma above, we prove that the ratio n_k is at least the number of
middle jobs + 1, ... *)
Lemma interference_bound_edf_n_k_covers_middle_jobs_plus_one :
n_k ≥ num_mid_jobs.+1.
Proof.
have DIST := interference_bound_edf_many_periods_in_between.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
interference_bound_edf_j_fst_completed_on_time.
rename H_valid_task_parameters into TASK_PARAMS,
H_tsk_k_in_task_set into INk.
unfold valid_sporadic_taskset, is_valid_sporadic_task,
interference_bound, edf_specific_interference_bound in ×.
rewrite leqNgt; apply/negP; unfold not; intro LTnk; unfold n_k in LTnk.
rewrite ltn_divLR in LTnk; last by specialize (TASK_PARAMS tsk_k INk); des.
apply (leq_trans LTnk) in DIST; rewrite ltn_subRL in DIST.
rewrite -(ltn_add2r D_k) -addnA [D_i + _]addnC addnA in DIST.
apply leq_ltn_trans with (m := job_arrival j_i + D_i) in DIST; last first.
{
rewrite leq_add2r; apply (leq_trans AFTERt1).
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [_ [ LEdl _]].
apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LEdl; try (by done).
unfold D_i, D_k in DIST; rewrite interference_bound_edf_j_lst_deadline
interference_bound_edf_j_i_deadline in LEdl.
by rewrite ltnNge LEdl in DIST.
Qed.
(* ... which allows bounding the interference of the middle and last jobs
using n_k multiplied by the cost. *)
Lemma interference_bound_edf_holds_for_middle_and_last_jobs :
interference_caused_by j_lst t1 t2 +
\sum_(0 ≤ i < num_mid_jobs)
interference_caused_by (nth elem sorted_jobs i.+1) t1 t2
≤ n_k × task_cost tsk_k.
Proof.
apply leq_trans with (n := num_mid_jobs.+1 × task_cost tsk_k); last first.
{
rewrite leq_mul2r; apply/orP; right.
by apply interference_bound_edf_n_k_covers_middle_jobs_plus_one.
}
rewrite mulSn; apply leq_add.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite H_at_least_two_jobs.
}
{
apply leq_trans with (n := \sum_(0 ≤ i < num_mid_jobs) task_cost tsk_k);
last by rewrite big_const_nat iter_addn addn0 mulnC subn0.
rewrite big_nat_cond [\sum_(0 ≤ i < num_mid_jobs) task_cost _]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move ⇒ /andP LT; des.
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
apply mem_nth; rewrite H_at_least_two_jobs.
by rewrite ltnS; apply leq_trans with (n := num_mid_jobs).
}
Qed.
(* Now, since n_k < sorted_jobs = num_mid_jobs + 2, it follows that
n_k = num_mid_jobs + 1. *)
Lemma interference_bound_edf_n_k_equals_num_mid_jobs_plus_one :
n_k = num_mid_jobs.+1.
Proof.
have NK := interference_bound_edf_n_k_covers_middle_jobs_plus_one.
rename H_many_jobs into NUM, H_at_least_two_jobs into SIZE.
move: NK; rewrite leq_eqVlt orbC; move ⇒ /orP NK; des;
[by rewrite SIZE ltnS leqNgt NK in NUM | by done].
Qed.
(* After proving the bounds of the middle and last jobs, we do the same for
the first job. This requires a different proof in order to exploit the slack. *)
Section InterferenceOfFirstJob.
(* As required by the next lemma, in order to move (D_i % p_k) to the left of
the inequality (<=), we must show that it is no smaller than the slack. *)
Lemma interference_bound_edf_remainder_ge_slack :
D_k - R_k ≤ D_i %% p_k.
Proof.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
interference_bound_edf_j_fst_completed_on_time.
have NK := interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
have DIST := interference_bound_edf_many_periods_in_between.
rewrite -NK in DIST.
rewrite -subndiv_eq_mod leq_subLR.
fold (div_floor D_i p_k) n_k.
rewrite addnBA; last by apply leq_trunc_div.
apply leq_trans with (n := R_k + D_i - (a_lst - a_fst)); last by apply leq_sub2l.
rewrite subnBA; last by apply interference_bound_edf_j_fst_before_j_lst.
rewrite -(leq_add2r a_lst) subh1; last first.
{
apply leq_trans with (n := t2);
[by apply ltnW, interference_bound_edf_last_job_arrives_before_end_of_interval|].
rewrite addnC addnA.
apply leq_trans with (n := t1 + D_i).
unfold t2; rewrite leq_add2l; apply H_delta_le_deadline.
by rewrite leq_add2r; apply AFTERt1.
}
rewrite -addnBA // subnn addn0 [D_k + _]addnC.
apply leq_trans with (n := t1 + D_i);
last by rewrite -addnA [D_i + _]addnC addnA leq_add2r addnC AFTERt1.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [_ [ LSTserv _]].
unfold D_i, D_k, a_lst, t1; rewrite -interference_bound_edf_j_lst_deadline
-interference_bound_edf_j_i_deadline.
by apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LSTserv.
Qed.
(* To conclude that the interference bound holds, it suffices to show that
this reordered inequality holds. *)
Lemma interference_bound_edf_simpl_by_moving_to_left_side :
interference_caused_by j_fst t1 t2 + (D_k - R_k) + D_i %/ p_k × p_k ≤ D_i →
interference_caused_by j_fst t1 t2 ≤ D_i %% p_k - (D_k - R_k).
Proof.
intro LE.
apply subh3; last by apply interference_bound_edf_remainder_ge_slack.
by rewrite -subndiv_eq_mod; apply subh3; last by apply leq_trunc_div.
Qed.
(* Next, we prove that interference caused by j_fst is bounded by the length
of the interval t1, a_fst + R_k), ... *)
Lemma interference_bound_edf_interference_of_j_fst_bounded_by_response_time :
interference_caused_by j_fst t1 t2 ≤ \sum_(t1 ≤ t < a_fst + R_k) 1.
Proof.
assert (AFTERt1: t1 ≤ a_fst + R_k).
{
apply interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval.
by apply interference_bound_edf_j_fst_completed_on_time.
}
destruct (leqP t2 (a_fst + R_k)) as [LEt2 | GTt2].
{
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst + R_k));
first by apply extend_sum; rewrite ?leqnn.
simpl_sum_const; rewrite -{1}[_ + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
{
unfold interference_caused_by, job_interference.
rewrite → big_cat_nat with (n := a_fst + R_k);
[simpl | by apply AFTERt1 | by apply ltnW].
rewrite -[\sum_(_ ≤ _ < _) 1]addn0; apply leq_add.
{
simpl_sum_const; rewrite -{1}[_ + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
apply leq_trans with (n := service_during sched j_fst (a_fst + R_k) t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP.
apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k);
[ by done | | by apply leqnn].
by apply interference_bound_edf_j_fst_completed_on_time.
}
Qed.
(* ..., which leads to the following bounds based on interval lengths. *)
Lemma interference_bound_edf_bounding_interference_with_interval_lengths :
interference_caused_by j_fst t1 t2 + (D_k - R_k) + D_i %/ p_k × p_k ≤
\sum_(t1 ≤ t < a_fst + R_k) 1
+ \sum_(a_fst + R_k ≤ t < a_fst + D_k) 1
+ \sum_(a_fst + D_k ≤ t < a_lst + D_k) 1.
Proof.
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 + (D_k - R_k) +
D_i %/ p_k × p_k).
{
rewrite 2!leq_add2r.
apply interference_bound_edf_interference_of_j_fst_bounded_by_response_time.
}
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 + (D_k - R_k) +
(a_lst - a_fst)).
{
rewrite leq_add2l; fold (div_floor D_i p_k) n_k.
rewrite interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
by apply interference_bound_edf_many_periods_in_between.
}
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 +
\sum_(a_fst + R_k ≤ t < a_fst + D_k) 1 + \sum_(a_fst + D_k ≤ t < a_lst + D_k) 1).
{
by rewrite -2!addnA leq_add2l; apply leq_add;
rewrite big_const_nat iter_addn mul1n addn0;
rewrite ?subnDl ?subnDr leqnn.
}
by apply leqnn.
Qed.
(* To conclude, we show that the concatenation of these interval lengths equals
(a_lst + D_k) - 1, ... *)
Lemma interference_bound_edf_simpl_by_concatenation_of_intervals :
\sum_(t1 ≤ t < a_fst + R_k) 1
+ \sum_(a_fst + R_k ≤ t < a_fst + D_k) 1
+ \sum_(a_fst + D_k ≤ t < a_lst + D_k) 1 = (a_lst + D_k) - t1.
Proof.
assert (AFTERt1: t1 ≤ a_fst + R_k).
{
apply interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval.
by apply interference_bound_edf_j_fst_completed_on_time.
}
rewrite -big_cat_nat;
[simpl | by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline].
rewrite -big_cat_nat; simpl; last 2 first.
{
apply leq_trans with (n := a_fst + R_k); first by apply AFTERt1.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
{
rewrite leq_add2r; unfold a_fst, a_lst, j_fst, j_lst.
rewrite -[num_mid_jobs.+1]add0n; apply prev_le_next;
last by rewrite add0n H_at_least_two_jobs ltnSn.
by ins; apply interference_bound_edf_jobs_ordered_by_arrival.
}
by rewrite big_const_nat iter_addn mul1n addn0.
Qed.
(* ... which results in proving that (a_lst + D_k) - t1 <= D_i.
This holds because high-priority jobs have earlier deadlines. Therefore,
the interference caused by the first job is bounded by D_i % p_k - (D_k - R_k). *)
Lemma interference_bound_edf_interference_of_j_fst_limited_by_remainder_and_slack :
interference_caused_by j_fst t1 t2 ≤ D_i %% p_k - (D_k - R_k).
Proof.
apply interference_bound_edf_simpl_by_moving_to_left_side.
apply (leq_trans interference_bound_edf_bounding_interference_with_interval_lengths).
rewrite interference_bound_edf_simpl_by_concatenation_of_intervals leq_subLR.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [_ [ LSTserv _]].
unfold D_i, D_k, a_lst, t1; rewrite -interference_bound_edf_j_lst_deadline
-interference_bound_edf_j_i_deadline.
by apply interference_under_edf_implies_shorter_deadlines
with (job_deadline0 := job_deadline) in LSTserv.
Qed.
End InterferenceOfFirstJob.
(* Using the lemmas above we show that the interference bound works in the
case of two or more jobs. *)
Lemma interference_bound_edf_holds_for_multiple_jobs :
\sum_(0 ≤ i < num_mid_jobs.+2)
interference_caused_by (nth elem sorted_jobs i) t1 t2 ≤ interference_bound.
Proof.
(* Knowing that we have at least two elements, we take first and last out of the sum *)
rewrite [nth]lock big_nat_recl // big_nat_recr // /= -lock.
rewrite addnA addnC addnA.
have NK := interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
(* We use the lemmas we proved to show that the interference bound holds. *)
unfold interference_bound, edf_specific_interference_bound.
fold D_i D_k p_k n_k.
rewrite addnC addnA; apply leq_add;
first by rewrite addnC interference_bound_edf_holds_for_middle_and_last_jobs.
rewrite leq_min; apply/andP; split.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite H_at_least_two_jobs.
}
by apply interference_bound_edf_interference_of_j_fst_limited_by_remainder_and_slack.
Qed.
End InterferenceTwoOrMoreJobs.
End InterferenceManyJobs.
Theorem interference_bound_edf_bounds_interference :
x ≤ interference_bound.
Proof.
(* Use the definition of workload based on list of jobs. *)
apply (leq_trans interference_bound_edf_use_another_definition).
(* We only care about the jobs that cause interference. *)
rewrite interference_bound_edf_simpl_by_filtering_interfering_jobs.
(* Now we order the list by job arrival time. *)
rewrite interference_bound_edf_simpl_by_sorting_interfering_jobs.
(* Next, we show that the workload bound holds if n_k
is no larger than the number of interferings jobs. *)
destruct (size sorted_jobs ≤ n_k) eqn:NUM;
first by apply interference_bound_edf_holds_for_at_most_n_k_jobs.
apply negbT in NUM; rewrite -ltnNge in NUM.
(* Find some dummy element to use in the nth function *)
assert (EX: ∃ elem: JobIn arr_seq, True).
destruct sorted_jobs as [| j]; [by rewrite ltn0 in NUM | by ∃ j].
destruct EX as [elem _].
(* Now we index the sum to access the first and last elements. *)
rewrite (big_nth elem).
(* First, we show that the bound holds for an empty list of jobs. *)
destruct (size sorted_jobs) as [| n] eqn:SIZE;
first by rewrite big_geq.
(* Then, we show the same for a single job, or for multiple jobs. *)
rewrite SIZE; destruct n as [| num_mid_jobs].
{
rewrite big_nat_recr // big_geq //.
rewrite [nth]lock /= -lock add0n.
by apply interference_bound_edf_holds_for_a_single_job; rewrite SIZE.
}
{
by apply interference_bound_edf_holds_for_multiple_jobs; first by rewrite SIZE.
}
Qed.
End MainProof.
End ProofSpecificBound.
(* As required by the proof of convergence of EDF RTA, we show that the
EDF-specific bound is monotonically increasing with both the size
of the interval and the value of the previous response-time bounds. *)
Section MonotonicitySpecificBound.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
Variable tsk tsk_other: sporadic_task.
Hypothesis H_period_positive: task_period tsk_other > 0.
Variable delta delta' R R': time.
Hypothesis H_delta_monotonic: delta ≤ delta'.
Hypothesis H_response_time_monotonic: R ≤ R'.
Hypothesis H_cost_le_rt_bound: task_cost tsk_other ≤ R.
Lemma interference_bound_edf_monotonic :
interference_bound_edf task_cost task_period task_deadline tsk delta (tsk_other, R) ≤
interference_bound_edf task_cost task_period task_deadline tsk delta' (tsk_other, R').
Proof.
rename H_response_time_monotonic into LEr, H_delta_monotonic into LEx,
H_cost_le_rt_bound into LEcost, H_period_positive into GEperiod.
unfold interference_bound_edf, interference_bound_generic.
rewrite leq_min; apply/andP; split.
{
rewrite leq_min; apply/andP; split.
apply leq_trans with (n := (minn (W task_cost task_period (fst (tsk_other, R))
(snd (tsk_other, R)) delta) (delta - task_cost tsk + 1)));
first by apply geq_minl.
apply leq_trans with (n := W task_cost task_period (fst (tsk_other, R))
(snd (tsk_other, R)) delta);
[by apply geq_minl | by apply W_monotonic].
apply leq_trans with (n := minn (W task_cost task_period (fst (tsk_other, R)) (snd (tsk_other, R)) delta) (delta - task_cost tsk + 1));
first by apply geq_minl.
apply leq_trans with (n := delta - task_cost tsk + 1);
first by apply geq_minr.
by rewrite leq_add2r leq_sub2r.
}
{
apply leq_trans with (n := edf_specific_interference_bound task_cost task_period
task_deadline tsk tsk_other R);
first by apply geq_minr.
unfold edf_specific_interference_bound; simpl.
rewrite leq_add2l leq_min; apply/andP; split; first by apply geq_minl.
apply leq_trans with (n := task_deadline tsk %% task_period tsk_other -
(task_deadline tsk_other - R));
[by apply geq_minr | by rewrite 2?leq_sub2l 2?leq_sub2r // leq_sub2l].
}
Qed.
End MonotonicitySpecificBound.
End InterferenceBoundEDF.
Require Import rt.model.basic.task rt.model.basic.job rt.model.basic.schedule
rt.model.basic.task_arrival rt.model.basic.platform rt.model.basic.response_time
rt.model.basic.workload rt.model.basic.priority rt.model.basic.schedulability
rt.model.basic.interference rt.model.basic.interference_edf.
Require Import rt.analysis.basic.workload_bound rt.analysis.basic.interference_bound.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop div path.
Module InterferenceBoundEDF.
Import Job SporadicTaskset Schedule ScheduleOfSporadicTask Schedulability
WorkloadBound ResponseTime Priority
SporadicTaskArrival Interference InterferenceEDF.
Export InterferenceBoundGeneric.
(* In this section, we define Bertogna and Cirinei's EDF-specific
interference bound. *)
Section SpecificBoundDef.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
(* Let tsk be the task to be analyzed. *)
Variable tsk: sporadic_task.
(* Consider the interference incurred by tsk in a window of length delta... *)
Variable delta: time.
(* ... due to a different task tsk_other, with response-time bound R_other. *)
Variable tsk_other: sporadic_task.
Variable R_other: time.
(* Bertogna and Cirinei define the following bound for task interference
under EDF scheduling. *)
Definition edf_specific_interference_bound :=
let d_tsk := task_deadline tsk in
let e_other := task_cost tsk_other in
let p_other := task_period tsk_other in
let d_other := task_deadline tsk_other in
(div_floor d_tsk p_other) × e_other +
minn e_other ((d_tsk %% p_other) - (d_other - R_other)).
End SpecificBoundDef.
(* Next, we define the total interference bound for EDF, which combines the generic
and the EDF-specific bounds. *)
Section TotalInterferenceBoundEDF.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
(* Let tsk be the task to be analyzed. *)
Variable tsk: sporadic_task.
Let task_with_response_time := (sporadic_task × time)%type.
(* Assume a known response-time bound for each interfering task ... *)
Variable R_prev: seq task_with_response_time.
(* ... and an interval length delta. *)
Variable delta: time.
Section RecallInterferenceBounds.
Variable tsk_R: task_with_response_time.
Let tsk_other := fst tsk_R.
Let R_other := snd tsk_R.
(* By combining Bertogna's interference bound for a work-conserving
scheduler ... *)
Let basic_interference_bound := interference_bound_generic task_cost task_period tsk delta tsk_R.
(* ... with and EDF-specific interference bound, ... *)
Let edf_specific_bound := edf_specific_interference_bound task_cost task_period task_deadline tsk tsk_other R_other.
(* ... Bertogna and Cirinei define the following interference bound
under EDF scheduling. *)
Definition interference_bound_edf :=
minn basic_interference_bound edf_specific_bound.
End RecallInterferenceBounds.
(* Next we define the computation of the total interference for APA scheduling. *)
Section TotalInterference.
(* Let other_task denote tasks different from tsk. *)
Let other_task := different_task tsk.
(* The total interference incurred by tsk is bounded by the sum
of individual task interferences of the other tasks. *)
Definition total_interference_bound_edf :=
\sum_((tsk_other, R_other) <- R_prev | other_task tsk_other)
interference_bound_edf (tsk_other, R_other).
End TotalInterference.
End TotalInterferenceBoundEDF.
(* In this section, we show that the EDF-specific interference bound is safe. *)
Section ProofSpecificBound.
Import Schedule Interference Platform SporadicTaskset.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
Context {Job: eqType}.
Variable job_cost: Job → time.
Variable job_deadline: Job → time.
Variable job_task: Job → sporadic_task.
(* Assume any job arrival sequence... *)
Context {arr_seq: arrival_sequence Job}.
(* ... in which jobs arrive sporadically and have valid parameters. *)
Hypothesis H_sporadic_tasks:
sporadic_task_model task_period arr_seq job_task.
Hypothesis H_valid_job_parameters:
∀ (j: JobIn arr_seq),
valid_sporadic_job task_cost task_deadline job_cost job_deadline job_task j.
(* Consider any schedule such that...*)
Variable num_cpus: nat.
Variable sched: schedule num_cpus arr_seq.
(* ...jobs do not execute before their arrival times nor longer
than their execution costs. *)
Hypothesis H_jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost sched.
(* Also assume that jobs are sequential and that there exists at
least one processor. *)
Hypothesis H_sequential_jobs: sequential_jobs sched.
Hypothesis H_at_least_one_cpu: num_cpus > 0.
(* Consider a task set ts where all jobs come from the task set
and tasks have valid parameters and constrained deadlines. *)
Variable ts: taskset_of sporadic_task.
Hypothesis all_jobs_from_taskset:
∀ (j: JobIn arr_seq), job_task j ∈ ts.
Hypothesis H_valid_task_parameters:
valid_sporadic_taskset task_cost task_period task_deadline ts.
Hypothesis H_constrained_deadlines:
∀ tsk, tsk ∈ ts → task_deadline tsk ≤ task_period tsk.
Let no_deadline_is_missed_by_tsk (tsk: sporadic_task) :=
task_misses_no_deadline job_cost job_deadline job_task sched tsk.
Let response_time_bounded_by (tsk: sporadic_task) :=
is_response_time_bound_of_task job_cost job_task tsk sched.
(* Assume that the scheduler is a work-conserving EDF scheduler. *)
Hypothesis H_work_conserving: work_conserving job_cost sched.
Hypothesis H_edf_scheduler:
enforces_JLDP_policy job_cost sched (EDF job_deadline).
(* Let tsk_i be the task to be analyzed, ...*)
Variable tsk_i: sporadic_task.
Hypothesis H_tsk_i_in_task_set: tsk_i ∈ ts.
(* ... and j_i one of its jobs. *)
Variable j_i: JobIn arr_seq.
Hypothesis H_job_of_tsk_i: job_task j_i = tsk_i.
(* Let tsk_k denote any interfering task, ... *)
Variable tsk_k: sporadic_task.
Hypothesis H_tsk_k_in_task_set: tsk_k ∈ ts.
(* ...and R_k its response-time bound. *)
Variable R_k: time.
Hypothesis H_R_k_le_deadline: R_k ≤ task_deadline tsk_k.
(* Consider a time window of length delta <= D_i, starting with j_i's arrival time. *)
Variable delta: time.
Hypothesis H_delta_le_deadline: delta ≤ task_deadline tsk_i.
(* Assume that the jobs of tsk_k satisfy the response-time bound before the end of the interval *)
Hypothesis H_all_previous_jobs_completed_on_time :
∀ (j_k: JobIn arr_seq),
job_task j_k = tsk_k →
job_arrival j_k + R_k < job_arrival j_i + delta →
completed job_cost sched j_k (job_arrival j_k + R_k).
(* In this section, we prove that Bertogna and Cirinei's EDF interference bound
indeed bounds the interference caused by task tsk_k in the interval t1, t1 + delta). *)
Section MainProof.
(* Let's call x the task interference incurred by job j due to tsk_k. *)
Let x :=
task_interference job_cost job_task sched j_i tsk_k
(job_arrival j_i) (job_arrival j_i + delta).
(* Also, recall the EDF-specific interference bound for EDF. *)
Let interference_bound :=
edf_specific_interference_bound task_cost task_period task_deadline tsk_i tsk_k R_k.
(* Let's simplify the names a bit. *)
Let t1 := job_arrival j_i.
Let t2 := job_arrival j_i + delta.
Let D_i := task_deadline tsk_i.
Let D_k := task_deadline tsk_k.
Let p_k := task_period tsk_k.
Let n_k := div_floor D_i p_k.
(* Let's give a simpler name to job interference. *)
Let interference_caused_by := job_interference job_cost sched j_i.
(* Identify the subset of jobs that actually cause interference *)
Let interfering_jobs :=
filter (fun (x: JobIn arr_seq) ⇒
(job_task x = tsk_k) ∧ (interference_caused_by x t1 t2 ≠ 0))
(jobs_scheduled_between sched t1 t2).
(* Now, consider the list of interfering jobs sorted by arrival time. *)
Let earlier_arrival := fun (x y: JobIn arr_seq) ⇒ job_arrival x ≤ job_arrival y.
Let sorted_jobs := (sort earlier_arrival interfering_jobs).
(* Now we proceed with the proof. The first step consists in simplifying the sum corresponding to the workload. *)
Section SimplifyJobSequence.
(* Use the alternative definition of task interference, based on
individual job interference. *)
Lemma interference_bound_edf_use_another_definition :
x ≤ \sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j = tsk_k)
interference_caused_by j t1 t2.
Proof.
apply interference_le_interference_joblist.
Qed.
(* Remove the elements that we don't care about from the sum *)
Lemma interference_bound_edf_simpl_by_filtering_interfering_jobs :
\sum_(j <- jobs_scheduled_between sched t1 t2 | job_task j = tsk_k)
interference_caused_by j t1 t2 =
\sum_(j <- interfering_jobs) interference_caused_by j t1 t2.
Proof.
unfold interfering_jobs; rewrite big_filter.
rewrite big_mkcond; rewrite [\sum_(_ <- _ | _) _]big_mkcond /=.
apply eq_bigr; intros i _; clear -i.
destruct (job_task i = tsk_k); rewrite ?andTb ?andFb; last by done.
destruct (interference_caused_by i t1 t2 ≠ 0) eqn:DIFF; first by done.
by apply negbT in DIFF; rewrite negbK in DIFF; apply/eqP.
Qed.
(* Then, we consider the sum over the sorted sequence of jobs. *)
Lemma interference_bound_edf_simpl_by_sorting_interfering_jobs :
\sum_(j <- interfering_jobs) interference_caused_by j t1 t2 =
\sum_(j <- sorted_jobs) interference_caused_by j t1 t2.
Proof.
by rewrite (eq_big_perm sorted_jobs) /=; last by rewrite -(perm_sort earlier_arrival).
Qed.
(* Note that both sequences have the same set of elements. *)
Lemma interference_bound_edf_job_in_same_sequence :
∀ j,
(j ∈ interfering_jobs) = (j ∈ sorted_jobs).
Proof.
by apply perm_eq_mem; rewrite -(perm_sort earlier_arrival).
Qed.
(* Also recall that all jobs in the sorted sequence is an interfering job of tsk_k, ... *)
Lemma interference_bound_edf_all_jobs_from_tsk_k :
∀ j,
j ∈ sorted_jobs →
job_task j = tsk_k ∧
interference_caused_by j t1 t2 ≠ 0 ∧
j ∈ jobs_scheduled_between sched t1 t2.
Proof.
intros j LT.
rewrite -interference_bound_edf_job_in_same_sequence mem_filter in LT.
by move: LT ⇒ /andP [/andP [/eqP JOBi SERVi] INi]; repeat split.
Qed.
(* ...and consecutive jobs are ordered by arrival. *)
Lemma interference_bound_edf_jobs_ordered_by_arrival :
∀ i elem,
i < (size sorted_jobs).-1 →
earlier_arrival (nth elem sorted_jobs i) (nth elem sorted_jobs i.+1).
Proof.
intros i elem LT.
assert (SORT: sorted earlier_arrival sorted_jobs).
by apply sort_sorted; unfold total, earlier_arrival; ins; apply leq_total.
by destruct sorted_jobs; simpl in *; [by rewrite ltn0 in LT | by apply/pathP].
Qed.
(* Finally, for any job of task tsk_k, the interference is bounded by the task cost. *)
Lemma interference_bound_edf_interference_le_task_cost :
∀ j,
j ∈ interfering_jobs →
interference_caused_by j t1 t2 ≤ task_cost tsk_k.
Proof.
rename H_valid_job_parameters into PARAMS.
intros j; rewrite mem_filter; move ⇒ /andP [/andP [/eqP JOBj _] _].
specialize (PARAMS j); des.
apply leq_trans with (n := service_during sched j t1 t2);
first by apply job_interference_le_service.
by apply cumulative_service_le_task_cost with (job_task0 := job_task)
(task_deadline0 := task_deadline) (job_cost0 := job_cost)
(job_deadline0 := job_deadline).
Qed.
End SimplifyJobSequence.
(* Next, we show that if the number of jobs is no larger than n_k,
the workload bound trivially holds. *)
Section InterferenceFewJobs.
Hypothesis H_few_jobs: size sorted_jobs ≤ n_k.
Lemma interference_bound_edf_holds_for_at_most_n_k_jobs :
\sum_(j <- sorted_jobs) interference_caused_by j t1 t2 ≤
interference_bound.
Proof.
rewrite -[\sum_(_ <- _ | _) _]addn0 leq_add //.
apply leq_trans with (n := \sum_(x <- sorted_jobs) task_cost tsk_k);
last by rewrite big_const_seq iter_addn addn0 mulnC leq_mul2r; apply/orP; right.
{
rewrite [\sum_(_ <- _) interference_caused_by _ _ _]big_seq_cond.
rewrite [\sum_(_ <- _) task_cost _]big_seq_cond.
apply leq_sum; intros i; move/andP ⇒ [INi _].
rewrite -interference_bound_edf_job_in_same_sequence in INi.
by apply interference_bound_edf_interference_le_task_cost.
}
Qed.
End InterferenceFewJobs.
(* Otherwise, assume that the number of jobs is larger than n_k >= 0. *)
Section InterferenceManyJobs.
Hypothesis H_many_jobs: n_k < size sorted_jobs.
(* This trivially implies that there's at least one job. *)
Lemma interference_bound_edf_at_least_one_job: size sorted_jobs > 0.
Proof.
by apply leq_ltn_trans with (n := n_k).
Qed.
(* Let j_fst be the first job, and a_fst its arrival time. *)
Variable elem: JobIn arr_seq.
Let j_fst := nth elem sorted_jobs 0.
Let a_fst := job_arrival j_fst.
(* In this section, we prove some basic lemmas about j_fst. *)
Section FactsAboutFirstJob.
(* The first job is an interfering job of task tsk_k. *)
Lemma interference_bound_edf_j_fst_is_job_of_tsk_k :
job_task j_fst = tsk_k ∧
interference_caused_by j_fst t1 t2 ≠ 0 ∧
j_fst ∈ jobs_scheduled_between sched t1 t2.
Proof.
by apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth,
interference_bound_edf_at_least_one_job.
Qed.
(* The deadline of j_fst is the deadline of tsk_k. *)
Lemma interference_bound_edf_j_fst_deadline :
job_deadline j_fst = task_deadline tsk_k.
Proof.
unfold valid_sporadic_job in ×.
rename H_valid_job_parameters into PARAMS.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTtask _].
by specialize (PARAMS j_fst); des; rewrite PARAMS1 FSTtask.
Qed.
(* The deadline of j_i is the deadline of tsk_i. *)
Lemma interference_bound_edf_j_i_deadline :
job_deadline j_i = task_deadline tsk_i.
Proof.
unfold valid_sporadic_job in ×.
rename H_valid_job_parameters into PARAMS,
H_job_of_tsk_i into JOBtsk.
by specialize (PARAMS j_i); des; rewrite PARAMS1 JOBtsk.
Qed.
(* If j_fst completes by its response-time bound, then t1 <= a_fst + R_k,
where t1 is the beginning of the time window (arrival of j_i). *)
Lemma interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval :
completed job_cost sched j_fst (a_fst + R_k) →
t1 ≤ a_fst + R_k.
Proof.
intros RBOUND.
rewrite leqNgt; apply/negP; unfold not; intro BUG.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [_ [ FSTserv _]].
move: FSTserv ⇒ /negP FSTserv; apply FSTserv.
rewrite -leqn0; apply leq_trans with (n := service_during sched j_fst t1 t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP.
by apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k);
try (by done); apply ltnW.
Qed.
End FactsAboutFirstJob.
(* Now, let's prove the interference bound for the particular case of a single job.
This case must be solved separately because the single job can simultaneously
be carry-in and carry-out job, so its response time is not necessarily
bounded by R_k (from the hypothesis H_all_previous_jobs_completed_on_time). *)
Section InterferenceSingleJob.
(* Assume that there's at least one job in the sorted list. *)
Hypothesis H_only_one_job: size sorted_jobs = 1.
(* Since there's only one job, we simplify the terms in the interference bound. *)
Lemma interference_bound_edf_simpl_when_there's_one_job :
D_i %% p_k - (D_k - R_k) = D_i - (D_k - R_k).
Proof.
rename H_many_jobs into NUM,
H_valid_task_parameters into TASK_PARAMS,
H_tsk_k_in_task_set into INk.
unfold valid_sporadic_taskset, is_valid_sporadic_task,
interference_bound, edf_specific_interference_bound in ×.
rewrite H_only_one_job in NUM.
rewrite ltnS leqn0 in NUM; move: NUM ⇒ /eqP EQnk.
move: EQnk ⇒ /eqP EQnk; unfold n_k, div_floor in EQnk.
rewrite -leqn0 leqNgt divn_gt0 in EQnk;
last by specialize (TASK_PARAMS tsk_k INk); des.
by rewrite -ltnNge in EQnk; rewrite modn_small //.
Qed.
(* Next, we show that if j_fst completes by its response-time bound R_k,
then then interference bound holds. *)
Section ResponseTimeOfSingleJobBounded.
Hypothesis H_j_fst_completed_by_rt_bound :
completed job_cost sched j_fst (a_fst + R_k).
Lemma interference_bound_edf_holds_for_single_job_that_completes_on_time :
job_interference job_cost sched j_i j_fst t1 t2 ≤ D_i - (D_k - R_k).
Proof.
rename H_j_fst_completed_by_rt_bound into RBOUND.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval RBOUND.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [_ [ LEdl _]].
apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LEdl; try (by done).
destruct (D_k - R_k ≤ D_i) eqn:LEdk; last first.
{
apply negbT in LEdk; rewrite -ltnNge in LEdk.
apply leq_trans with (n := 0); last by done.
apply leq_trans with (n := job_interference job_cost sched j_i j_fst
(a_fst + R_k) t2).
{
apply extend_sum; last by apply leqnn.
rewrite -(leq_add2r D_i).
rewrite interference_bound_edf_j_fst_deadline
interference_bound_edf_j_i_deadline in LEdl.
apply leq_trans with (n := a_fst + D_k); last by done.
rewrite -addnA leq_add2l.
by apply ltnW; rewrite -ltn_subRL.
}
apply leq_trans with (n := service_during sched j_fst (a_fst + R_k) t2);
first by apply job_interference_le_service.
unfold service_during; rewrite leqn0; apply/eqP.
by apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k);
try (by done); apply leqnn.
}
{
rewrite -(leq_add2r (D_k - R_k)) subh1 // -addnBA // subnn addn0.
assert (SUBST: D_k - R_k = \sum_(a_fst + R_k ≤ i < a_fst + D_k) 1).
{
rewrite big_const_nat iter_addn mul1n addn0.
rewrite addnC -subnBA; last by apply leq_addr.
by rewrite addnC -addnBA // subnn addn0.
}
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst + D_k) + (D_k - R_k)).
{
rewrite leq_add2r.
destruct (t2 ≤ a_fst + R_k) eqn:LEt2.
{
apply extend_sum; first by apply leqnn.
apply leq_trans with (n := a_fst + R_k); first by done.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
{
unfold job_interference.
apply negbT in LEt2; rewrite -ltnNge in LEt2.
rewrite → big_cat_nat with (n := a_fst + R_k);
[simpl | by apply AFTERt1 | by apply ltnW].
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst + R_k) + service_during sched j_fst (a_fst + R_k) t2).
{
rewrite leq_add2l.
by apply job_interference_le_service.
}
unfold service_during.
rewrite → cumulative_service_after_job_rt_zero with
(job_cost0 := job_cost) (R := R_k); try (by done).
rewrite addn0; apply extend_sum; first by apply leqnn.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
}
unfold job_interference.
rewrite → big_cat_nat with (n := a_fst + R_k);
[simpl| by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline].
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst+R_k) + service_during sched j_fst (a_fst+R_k) (a_fst+D_k) + (D_k-R_k)).
{
rewrite leq_add2r leq_add2l.
by apply job_interference_le_service.
}
unfold service_during.
rewrite → cumulative_service_after_job_rt_zero with
(job_cost0 := job_cost) (R:=R_k); try (by done).
rewrite addn0.
apply leq_trans with (n := (\sum_(t1 ≤ t < a_fst + R_k) 1) +
\sum_(a_fst + R_k ≤ t < a_fst + D_k) 1).
{
apply leq_add; last by rewrite SUBST.
rewrite big_const_nat iter_addn mul1n addn0.
rewrite -{1}[a_fst + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
rewrite -big_cat_nat;
[simpl | by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline ].
rewrite big_const_nat iter_addn mul1n addn0 leq_subLR.
by unfold D_i, D_k, t1, a_fst; rewrite -interference_bound_edf_j_fst_deadline
-interference_bound_edf_j_i_deadline.
}
Qed.
End ResponseTimeOfSingleJobBounded.
(* Else, if j_fst did not complete by its response-time bound, then
we need a separate proof. *)
Section ResponseTimeOfSingleJobNotBounded.
Hypothesis H_j_fst_not_complete_by_rt_bound :
¬ completed job_cost sched j_fst (a_fst + R_k).
(* This trivially implies that a_fst + R_k lies after the end of the interval,
otherwise j_fst would have completed by its response-time bound. *)
Lemma interference_bound_edf_response_time_bound_of_j_fst_after_interval :
job_arrival j_fst + R_k ≥ job_arrival j_i + delta.
Proof.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTtask _].
rewrite leqNgt; apply/negP; intro LT.
move: H_j_fst_not_complete_by_rt_bound ⇒ /negP BUG; apply BUG.
by apply H_all_previous_jobs_completed_on_time.
Qed.
(* If the slack is too big (D_i < D_k - R_k), j_fst causes no interference. *)
Lemma interference_bound_edf_holds_for_single_job_with_big_slack :
D_i < D_k - R_k →
interference_caused_by j_fst t1 t2 = 0.
Proof.
intro LTdk.
rewrite ltn_subRL in LTdk.
rewrite -(ltn_add2l a_fst) addnA in LTdk.
apply leq_ltn_trans with (m := t1 + D_i) in LTdk; last first.
{
rewrite leq_add2r.
apply leq_trans with (n := t1 + delta); first by apply leq_addr.
by apply interference_bound_edf_response_time_bound_of_j_fst_after_interval.
}
apply/eqP; rewrite -[_ _ _ _ = 0]negbK; apply/negP; red; intro BUG.
apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in BUG; try (by done).
rewrite interference_bound_edf_j_fst_deadline
interference_bound_edf_j_i_deadline in BUG.
by apply (leq_trans LTdk) in BUG; rewrite ltnn in BUG.
Qed.
(* Else, if the slack is small, j_fst causes interference for no longer than
D_i - (D_k - R_k). *)
Lemma interference_bound_edf_holds_for_single_job_with_small_slack :
D_i ≥ D_k - R_k →
interference_caused_by j_fst t1 t2 ≤ D_i - (D_k - R_k).
Proof.
intro LEdk.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k.
destruct FST as [FSTtask [LEdl _]].
have LTr := interference_bound_edf_response_time_bound_of_j_fst_after_interval.
apply subh3; last by apply LEdk.
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(job_arrival j_fst + R_k) + (D_k - R_k));
first by rewrite leq_add2r; apply extend_sum; [by apply leqnn|].
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 +
\sum_(a_fst + R_k ≤ t < a_fst + D_k)1).
{
apply leq_add.
{
rewrite big_const_nat iter_addn mul1n addn0.
rewrite -{1}[job_arrival j_fst + R_k](addKn t1) -addnBA;
first by apply job_interference_le_delta.
by apply leq_trans with (n := t1 + delta); first by apply leq_addr.
}
rewrite big_const_nat iter_addn mul1n addn0 addnC.
rewrite -subnBA; last by apply leq_addr.
by rewrite addnC -addnBA // subnn addn0.
}
rewrite -big_cat_nat; simpl; last 2 first.
{
apply leq_trans with (n := t1 + delta); first by apply leq_addr.
by apply interference_bound_edf_response_time_bound_of_j_fst_after_interval.
}
by rewrite leq_add2l; apply H_R_k_le_deadline.
rewrite big_const_nat iter_addn mul1n addn0 leq_subLR.
unfold D_i, D_k, t1, a_fst; rewrite -interference_bound_edf_j_fst_deadline
-interference_bound_edf_j_i_deadline.
by apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LEdl.
Qed.
End ResponseTimeOfSingleJobNotBounded.
(* By combining the results above, we prove that the interference caused by the single job
is bounded by D_i - (D_k - R_k), ... *)
Lemma interference_bound_edf_interference_of_j_fst_limited_by_slack :
interference_caused_by j_fst t1 t2 ≤ D_i - (D_k - R_k).
Proof.
destruct (completed job_cost sched j_fst (a_fst + R_k)) eqn:COMP;
first by apply interference_bound_edf_holds_for_single_job_that_completes_on_time.
apply negbT in COMP.
destruct (ltnP D_i (D_k - R_k)) as [LEdk | LTdk].
by rewrite interference_bound_edf_holds_for_single_job_with_big_slack.
by apply interference_bound_edf_holds_for_single_job_with_small_slack.
Qed.
(* ... and thus the interference bound holds. *)
Lemma interference_bound_edf_holds_for_a_single_job :
interference_caused_by j_fst t1 t2 ≤ interference_bound.
Proof.
have ONE := interference_bound_edf_simpl_when_there's_one_job.
have SLACK := interference_bound_edf_interference_of_j_fst_limited_by_slack.
rename H_many_jobs into NUM, H_only_one_job into SIZE.
unfold interference_caused_by, interference_bound, edf_specific_interference_bound.
fold D_i D_k p_k n_k.
rewrite SIZE ltnS leqn0 in NUM; move: NUM ⇒ /eqP EQnk.
rewrite EQnk mul0n add0n.
rewrite leq_min; apply/andP; split.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite SIZE.
}
by rewrite ONE; apply SLACK.
Qed.
End InterferenceSingleJob.
(* Next, consider the other case where there are at least two jobs:
the first job j_fst, and the last job j_lst. *)
Section InterferenceTwoOrMoreJobs.
(* Assume there are at least two jobs. *)
Variable num_mid_jobs: nat.
Hypothesis H_at_least_two_jobs : size sorted_jobs = num_mid_jobs.+2.
(* Let j_lst be the last job of the sequence and a_lst its arrival time. *)
Let j_lst := nth elem sorted_jobs num_mid_jobs.+1.
Let a_lst := job_arrival j_lst.
(* In this section, we prove some basic lemmas about the first and last jobs. *)
Section FactsAboutFirstAndLastJobs.
(* The last job is an interfering job of task tsk_k. *)
Lemma interference_bound_edf_j_lst_is_job_of_tsk_k :
job_task j_lst = tsk_k ∧
interference_caused_by j_lst t1 t2 ≠ 0 ∧
j_lst ∈ jobs_scheduled_between sched t1 t2.
Proof.
apply interference_bound_edf_all_jobs_from_tsk_k, mem_nth.
by rewrite H_at_least_two_jobs.
Qed.
(* The deadline of j_lst is the deadline of tsk_k. *)
Lemma interference_bound_edf_j_lst_deadline :
job_deadline j_lst = task_deadline tsk_k.
Proof.
unfold valid_sporadic_job in ×.
rename H_valid_job_parameters into PARAMS.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [LSTtask _].
by specialize (PARAMS j_lst); des; rewrite PARAMS1 LSTtask.
Qed.
(* The first job arrives before the last job. *)
Lemma interference_bound_edf_j_fst_before_j_lst :
job_arrival j_fst ≤ job_arrival j_lst.
Proof.
rename H_at_least_two_jobs into SIZE.
unfold j_fst, j_lst; rewrite -[num_mid_jobs.+1]add0n.
apply prev_le_next; last by rewrite SIZE leqnn.
by intros i LT; apply interference_bound_edf_jobs_ordered_by_arrival.
Qed.
(* The last job arrives before the end of the interval. *)
Lemma interference_bound_edf_last_job_arrives_before_end_of_interval :
job_arrival j_lst < t2.
Proof.
rewrite leqNgt; apply/negP; unfold not; intro LT2.
exploit interference_bound_edf_all_jobs_from_tsk_k.
{
apply mem_nth; instantiate (1 := num_mid_jobs.+1).
by rewrite -(ltn_add2r 1) addn1 H_at_least_two_jobs addn1.
}
instantiate (1 := elem); move ⇒ [LSTtsk [/eqP LSTserv LSTin]].
apply LSTserv; apply/eqP; rewrite -leqn0.
apply leq_trans with (n := service_during sched j_lst t1 t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP; unfold service_during.
by apply cumulative_service_before_job_arrival_zero.
Qed.
(* Since there are multiple jobs, j_fst is far enough from the end of
the interval that its response-time bound is valid
(by the assumption H_all_previous_jobs_completed_on_time). *)
Lemma interference_bound_edf_j_fst_completed_on_time :
completed job_cost sched j_fst (a_fst + R_k).
Proof.
have FST := interference_bound_edf_j_fst_is_job_of_tsk_k; des.
set j_snd := nth elem sorted_jobs 1.
exploit interference_bound_edf_all_jobs_from_tsk_k.
{
by apply mem_nth; instantiate (1 := 1); rewrite H_at_least_two_jobs.
}
instantiate (1 := elem); move ⇒ [SNDtsk [/eqP SNDserv _]].
apply H_all_previous_jobs_completed_on_time; try (by done).
apply leq_ltn_trans with (n := job_arrival j_snd); last first.
{
rewrite ltnNge; apply/negP; red; intro BUG; apply SNDserv.
apply/eqP; rewrite -leqn0; apply leq_trans with (n := service_during
sched j_snd t1 t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP.
by apply cumulative_service_before_job_arrival_zero.
}
apply leq_trans with (n := a_fst + p_k).
{
by rewrite leq_add2l; apply leq_trans with (n := D_k);
[by apply H_R_k_le_deadline | by apply H_constrained_deadlines].
}
(* Since jobs are sporadic, we know that the first job arrives
at least p_k units before the second. *)
unfold p_k; rewrite -FST.
apply H_sporadic_tasks; [| by rewrite SNDtsk | ]; last first.
{
apply interference_bound_edf_jobs_ordered_by_arrival.
by rewrite H_at_least_two_jobs.
}
red; move ⇒ /eqP BUG.
by rewrite nth_uniq in BUG; rewrite ?SIZE //;
[ by apply interference_bound_edf_at_least_one_job
| by rewrite H_at_least_two_jobs
| by rewrite sort_uniq; apply filter_uniq, undup_uniq].
Qed.
End FactsAboutFirstAndLastJobs.
(* Next, we prove that the distance between the first and last jobs is at least
num_mid_jobs + 1 periods. *)
Lemma interference_bound_edf_many_periods_in_between :
a_lst - a_fst ≥ num_mid_jobs.+1 × p_k.
Proof.
unfold a_fst, a_lst, j_fst, j_lst.
assert (EQnk: num_mid_jobs.+1=(size sorted_jobs).-1).
by rewrite H_at_least_two_jobs.
rewrite EQnk telescoping_sum;
last by ins; apply interference_bound_edf_jobs_ordered_by_arrival.
rewrite -[_ × _ tsk_k]addn0 mulnC -iter_addn -{1}[_.-1]subn0 -big_const_nat.
rewrite big_nat_cond [\sum_(0 ≤ i < _)(_-_)]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move ⇒ /andP LT; des.
(* To simplify, call the jobs 'cur' and 'next' *)
set cur := nth elem sorted_jobs i.
set next := nth elem sorted_jobs i.+1.
(* Show that cur arrives earlier than next *)
assert (ARRle: job_arrival cur ≤ job_arrival next).
by unfold cur, next; apply interference_bound_edf_jobs_ordered_by_arrival.
(* Show that both cur and next are in the arrival sequence *)
assert (INnth: cur ∈ interfering_jobs ∧ next ∈ interfering_jobs).
{
rewrite 2!interference_bound_edf_job_in_same_sequence; split.
by apply mem_nth, (ltn_trans LT0); destruct sorted_jobs; ins.
by apply mem_nth; destruct sorted_jobs; ins.
}
rewrite 2?mem_filter in INnth; des.
(* Use the sporadic task model to conclude that cur and next are separated
by at least (task_period tsk) units. Of course this only holds if cur != next.
Since we don't know much about the list (except that it's sorted), we must
also prove that it doesn't contain duplicates. *)
assert (CUR_LE_NEXT: job_arrival cur + task_period (job_task cur) ≤ job_arrival next).
{
apply H_sporadic_tasks; last by ins.
unfold cur, next, not; intro EQ; move: EQ ⇒ /eqP EQ.
rewrite nth_uniq in EQ; first by move: EQ ⇒ /eqP EQ; intuition.
by apply ltn_trans with (n := (size sorted_jobs).-1); destruct sorted_jobs; ins.
by destruct sorted_jobs; ins.
by rewrite sort_uniq -/interfering_jobs filter_uniq // undup_uniq.
by rewrite INnth INnth0.
}
by rewrite subh3 // addnC /p_k -INnth.
Qed.
(* Using the lemma above, we prove that the ratio n_k is at least the number of
middle jobs + 1, ... *)
Lemma interference_bound_edf_n_k_covers_middle_jobs_plus_one :
n_k ≥ num_mid_jobs.+1.
Proof.
have DIST := interference_bound_edf_many_periods_in_between.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
interference_bound_edf_j_fst_completed_on_time.
rename H_valid_task_parameters into TASK_PARAMS,
H_tsk_k_in_task_set into INk.
unfold valid_sporadic_taskset, is_valid_sporadic_task,
interference_bound, edf_specific_interference_bound in ×.
rewrite leqNgt; apply/negP; unfold not; intro LTnk; unfold n_k in LTnk.
rewrite ltn_divLR in LTnk; last by specialize (TASK_PARAMS tsk_k INk); des.
apply (leq_trans LTnk) in DIST; rewrite ltn_subRL in DIST.
rewrite -(ltn_add2r D_k) -addnA [D_i + _]addnC addnA in DIST.
apply leq_ltn_trans with (m := job_arrival j_i + D_i) in DIST; last first.
{
rewrite leq_add2r; apply (leq_trans AFTERt1).
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [_ [ LEdl _]].
apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LEdl; try (by done).
unfold D_i, D_k in DIST; rewrite interference_bound_edf_j_lst_deadline
interference_bound_edf_j_i_deadline in LEdl.
by rewrite ltnNge LEdl in DIST.
Qed.
(* ... which allows bounding the interference of the middle and last jobs
using n_k multiplied by the cost. *)
Lemma interference_bound_edf_holds_for_middle_and_last_jobs :
interference_caused_by j_lst t1 t2 +
\sum_(0 ≤ i < num_mid_jobs)
interference_caused_by (nth elem sorted_jobs i.+1) t1 t2
≤ n_k × task_cost tsk_k.
Proof.
apply leq_trans with (n := num_mid_jobs.+1 × task_cost tsk_k); last first.
{
rewrite leq_mul2r; apply/orP; right.
by apply interference_bound_edf_n_k_covers_middle_jobs_plus_one.
}
rewrite mulSn; apply leq_add.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite H_at_least_two_jobs.
}
{
apply leq_trans with (n := \sum_(0 ≤ i < num_mid_jobs) task_cost tsk_k);
last by rewrite big_const_nat iter_addn addn0 mulnC subn0.
rewrite big_nat_cond [\sum_(0 ≤ i < num_mid_jobs) task_cost _]big_nat_cond.
apply leq_sum; intros i; rewrite andbT; move ⇒ /andP LT; des.
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
apply mem_nth; rewrite H_at_least_two_jobs.
by rewrite ltnS; apply leq_trans with (n := num_mid_jobs).
}
Qed.
(* Now, since n_k < sorted_jobs = num_mid_jobs + 2, it follows that
n_k = num_mid_jobs + 1. *)
Lemma interference_bound_edf_n_k_equals_num_mid_jobs_plus_one :
n_k = num_mid_jobs.+1.
Proof.
have NK := interference_bound_edf_n_k_covers_middle_jobs_plus_one.
rename H_many_jobs into NUM, H_at_least_two_jobs into SIZE.
move: NK; rewrite leq_eqVlt orbC; move ⇒ /orP NK; des;
[by rewrite SIZE ltnS leqNgt NK in NUM | by done].
Qed.
(* After proving the bounds of the middle and last jobs, we do the same for
the first job. This requires a different proof in order to exploit the slack. *)
Section InterferenceOfFirstJob.
(* As required by the next lemma, in order to move (D_i % p_k) to the left of
the inequality (<=), we must show that it is no smaller than the slack. *)
Lemma interference_bound_edf_remainder_ge_slack :
D_k - R_k ≤ D_i %% p_k.
Proof.
have AFTERt1 :=
interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval
interference_bound_edf_j_fst_completed_on_time.
have NK := interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
have DIST := interference_bound_edf_many_periods_in_between.
rewrite -NK in DIST.
rewrite -subndiv_eq_mod leq_subLR.
fold (div_floor D_i p_k) n_k.
rewrite addnBA; last by apply leq_trunc_div.
apply leq_trans with (n := R_k + D_i - (a_lst - a_fst)); last by apply leq_sub2l.
rewrite subnBA; last by apply interference_bound_edf_j_fst_before_j_lst.
rewrite -(leq_add2r a_lst) subh1; last first.
{
apply leq_trans with (n := t2);
[by apply ltnW, interference_bound_edf_last_job_arrives_before_end_of_interval|].
rewrite addnC addnA.
apply leq_trans with (n := t1 + D_i).
unfold t2; rewrite leq_add2l; apply H_delta_le_deadline.
by rewrite leq_add2r; apply AFTERt1.
}
rewrite -addnBA // subnn addn0 [D_k + _]addnC.
apply leq_trans with (n := t1 + D_i);
last by rewrite -addnA [D_i + _]addnC addnA leq_add2r addnC AFTERt1.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [_ [ LSTserv _]].
unfold D_i, D_k, a_lst, t1; rewrite -interference_bound_edf_j_lst_deadline
-interference_bound_edf_j_i_deadline.
by apply interference_under_edf_implies_shorter_deadlines with
(job_deadline0 := job_deadline) in LSTserv.
Qed.
(* To conclude that the interference bound holds, it suffices to show that
this reordered inequality holds. *)
Lemma interference_bound_edf_simpl_by_moving_to_left_side :
interference_caused_by j_fst t1 t2 + (D_k - R_k) + D_i %/ p_k × p_k ≤ D_i →
interference_caused_by j_fst t1 t2 ≤ D_i %% p_k - (D_k - R_k).
Proof.
intro LE.
apply subh3; last by apply interference_bound_edf_remainder_ge_slack.
by rewrite -subndiv_eq_mod; apply subh3; last by apply leq_trunc_div.
Qed.
(* Next, we prove that interference caused by j_fst is bounded by the length
of the interval t1, a_fst + R_k), ... *)
Lemma interference_bound_edf_interference_of_j_fst_bounded_by_response_time :
interference_caused_by j_fst t1 t2 ≤ \sum_(t1 ≤ t < a_fst + R_k) 1.
Proof.
assert (AFTERt1: t1 ≤ a_fst + R_k).
{
apply interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval.
by apply interference_bound_edf_j_fst_completed_on_time.
}
destruct (leqP t2 (a_fst + R_k)) as [LEt2 | GTt2].
{
apply leq_trans with (n := job_interference job_cost sched j_i j_fst t1
(a_fst + R_k));
first by apply extend_sum; rewrite ?leqnn.
simpl_sum_const; rewrite -{1}[_ + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
{
unfold interference_caused_by, job_interference.
rewrite → big_cat_nat with (n := a_fst + R_k);
[simpl | by apply AFTERt1 | by apply ltnW].
rewrite -[\sum_(_ ≤ _ < _) 1]addn0; apply leq_add.
{
simpl_sum_const; rewrite -{1}[_ + R_k](addKn t1) -addnBA //.
by apply job_interference_le_delta.
}
apply leq_trans with (n := service_during sched j_fst (a_fst + R_k) t2);
first by apply job_interference_le_service.
rewrite leqn0; apply/eqP.
apply cumulative_service_after_job_rt_zero with (job_cost0 := job_cost) (R := R_k);
[ by done | | by apply leqnn].
by apply interference_bound_edf_j_fst_completed_on_time.
}
Qed.
(* ..., which leads to the following bounds based on interval lengths. *)
Lemma interference_bound_edf_bounding_interference_with_interval_lengths :
interference_caused_by j_fst t1 t2 + (D_k - R_k) + D_i %/ p_k × p_k ≤
\sum_(t1 ≤ t < a_fst + R_k) 1
+ \sum_(a_fst + R_k ≤ t < a_fst + D_k) 1
+ \sum_(a_fst + D_k ≤ t < a_lst + D_k) 1.
Proof.
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 + (D_k - R_k) +
D_i %/ p_k × p_k).
{
rewrite 2!leq_add2r.
apply interference_bound_edf_interference_of_j_fst_bounded_by_response_time.
}
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 + (D_k - R_k) +
(a_lst - a_fst)).
{
rewrite leq_add2l; fold (div_floor D_i p_k) n_k.
rewrite interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
by apply interference_bound_edf_many_periods_in_between.
}
apply leq_trans with (n := \sum_(t1 ≤ t < a_fst + R_k) 1 +
\sum_(a_fst + R_k ≤ t < a_fst + D_k) 1 + \sum_(a_fst + D_k ≤ t < a_lst + D_k) 1).
{
by rewrite -2!addnA leq_add2l; apply leq_add;
rewrite big_const_nat iter_addn mul1n addn0;
rewrite ?subnDl ?subnDr leqnn.
}
by apply leqnn.
Qed.
(* To conclude, we show that the concatenation of these interval lengths equals
(a_lst + D_k) - 1, ... *)
Lemma interference_bound_edf_simpl_by_concatenation_of_intervals :
\sum_(t1 ≤ t < a_fst + R_k) 1
+ \sum_(a_fst + R_k ≤ t < a_fst + D_k) 1
+ \sum_(a_fst + D_k ≤ t < a_lst + D_k) 1 = (a_lst + D_k) - t1.
Proof.
assert (AFTERt1: t1 ≤ a_fst + R_k).
{
apply interference_bound_edf_j_fst_completion_implies_rt_bound_inside_interval.
by apply interference_bound_edf_j_fst_completed_on_time.
}
rewrite -big_cat_nat;
[simpl | by apply AFTERt1 | by rewrite leq_add2l; apply H_R_k_le_deadline].
rewrite -big_cat_nat; simpl; last 2 first.
{
apply leq_trans with (n := a_fst + R_k); first by apply AFTERt1.
by rewrite leq_add2l; apply H_R_k_le_deadline.
}
{
rewrite leq_add2r; unfold a_fst, a_lst, j_fst, j_lst.
rewrite -[num_mid_jobs.+1]add0n; apply prev_le_next;
last by rewrite add0n H_at_least_two_jobs ltnSn.
by ins; apply interference_bound_edf_jobs_ordered_by_arrival.
}
by rewrite big_const_nat iter_addn mul1n addn0.
Qed.
(* ... which results in proving that (a_lst + D_k) - t1 <= D_i.
This holds because high-priority jobs have earlier deadlines. Therefore,
the interference caused by the first job is bounded by D_i % p_k - (D_k - R_k). *)
Lemma interference_bound_edf_interference_of_j_fst_limited_by_remainder_and_slack :
interference_caused_by j_fst t1 t2 ≤ D_i %% p_k - (D_k - R_k).
Proof.
apply interference_bound_edf_simpl_by_moving_to_left_side.
apply (leq_trans interference_bound_edf_bounding_interference_with_interval_lengths).
rewrite interference_bound_edf_simpl_by_concatenation_of_intervals leq_subLR.
have LST := interference_bound_edf_j_lst_is_job_of_tsk_k.
destruct LST as [_ [ LSTserv _]].
unfold D_i, D_k, a_lst, t1; rewrite -interference_bound_edf_j_lst_deadline
-interference_bound_edf_j_i_deadline.
by apply interference_under_edf_implies_shorter_deadlines
with (job_deadline0 := job_deadline) in LSTserv.
Qed.
End InterferenceOfFirstJob.
(* Using the lemmas above we show that the interference bound works in the
case of two or more jobs. *)
Lemma interference_bound_edf_holds_for_multiple_jobs :
\sum_(0 ≤ i < num_mid_jobs.+2)
interference_caused_by (nth elem sorted_jobs i) t1 t2 ≤ interference_bound.
Proof.
(* Knowing that we have at least two elements, we take first and last out of the sum *)
rewrite [nth]lock big_nat_recl // big_nat_recr // /= -lock.
rewrite addnA addnC addnA.
have NK := interference_bound_edf_n_k_equals_num_mid_jobs_plus_one.
(* We use the lemmas we proved to show that the interference bound holds. *)
unfold interference_bound, edf_specific_interference_bound.
fold D_i D_k p_k n_k.
rewrite addnC addnA; apply leq_add;
first by rewrite addnC interference_bound_edf_holds_for_middle_and_last_jobs.
rewrite leq_min; apply/andP; split.
{
apply interference_bound_edf_interference_le_task_cost.
rewrite interference_bound_edf_job_in_same_sequence.
by apply mem_nth; rewrite H_at_least_two_jobs.
}
by apply interference_bound_edf_interference_of_j_fst_limited_by_remainder_and_slack.
Qed.
End InterferenceTwoOrMoreJobs.
End InterferenceManyJobs.
Theorem interference_bound_edf_bounds_interference :
x ≤ interference_bound.
Proof.
(* Use the definition of workload based on list of jobs. *)
apply (leq_trans interference_bound_edf_use_another_definition).
(* We only care about the jobs that cause interference. *)
rewrite interference_bound_edf_simpl_by_filtering_interfering_jobs.
(* Now we order the list by job arrival time. *)
rewrite interference_bound_edf_simpl_by_sorting_interfering_jobs.
(* Next, we show that the workload bound holds if n_k
is no larger than the number of interferings jobs. *)
destruct (size sorted_jobs ≤ n_k) eqn:NUM;
first by apply interference_bound_edf_holds_for_at_most_n_k_jobs.
apply negbT in NUM; rewrite -ltnNge in NUM.
(* Find some dummy element to use in the nth function *)
assert (EX: ∃ elem: JobIn arr_seq, True).
destruct sorted_jobs as [| j]; [by rewrite ltn0 in NUM | by ∃ j].
destruct EX as [elem _].
(* Now we index the sum to access the first and last elements. *)
rewrite (big_nth elem).
(* First, we show that the bound holds for an empty list of jobs. *)
destruct (size sorted_jobs) as [| n] eqn:SIZE;
first by rewrite big_geq.
(* Then, we show the same for a single job, or for multiple jobs. *)
rewrite SIZE; destruct n as [| num_mid_jobs].
{
rewrite big_nat_recr // big_geq //.
rewrite [nth]lock /= -lock add0n.
by apply interference_bound_edf_holds_for_a_single_job; rewrite SIZE.
}
{
by apply interference_bound_edf_holds_for_multiple_jobs; first by rewrite SIZE.
}
Qed.
End MainProof.
End ProofSpecificBound.
(* As required by the proof of convergence of EDF RTA, we show that the
EDF-specific bound is monotonically increasing with both the size
of the interval and the value of the previous response-time bounds. *)
Section MonotonicitySpecificBound.
Context {sporadic_task: eqType}.
Variable task_cost: sporadic_task → time.
Variable task_period: sporadic_task → time.
Variable task_deadline: sporadic_task → time.
Variable tsk tsk_other: sporadic_task.
Hypothesis H_period_positive: task_period tsk_other > 0.
Variable delta delta' R R': time.
Hypothesis H_delta_monotonic: delta ≤ delta'.
Hypothesis H_response_time_monotonic: R ≤ R'.
Hypothesis H_cost_le_rt_bound: task_cost tsk_other ≤ R.
Lemma interference_bound_edf_monotonic :
interference_bound_edf task_cost task_period task_deadline tsk delta (tsk_other, R) ≤
interference_bound_edf task_cost task_period task_deadline tsk delta' (tsk_other, R').
Proof.
rename H_response_time_monotonic into LEr, H_delta_monotonic into LEx,
H_cost_le_rt_bound into LEcost, H_period_positive into GEperiod.
unfold interference_bound_edf, interference_bound_generic.
rewrite leq_min; apply/andP; split.
{
rewrite leq_min; apply/andP; split.
apply leq_trans with (n := (minn (W task_cost task_period (fst (tsk_other, R))
(snd (tsk_other, R)) delta) (delta - task_cost tsk + 1)));
first by apply geq_minl.
apply leq_trans with (n := W task_cost task_period (fst (tsk_other, R))
(snd (tsk_other, R)) delta);
[by apply geq_minl | by apply W_monotonic].
apply leq_trans with (n := minn (W task_cost task_period (fst (tsk_other, R)) (snd (tsk_other, R)) delta) (delta - task_cost tsk + 1));
first by apply geq_minl.
apply leq_trans with (n := delta - task_cost tsk + 1);
first by apply geq_minr.
by rewrite leq_add2r leq_sub2r.
}
{
apply leq_trans with (n := edf_specific_interference_bound task_cost task_period
task_deadline tsk tsk_other R);
first by apply geq_minr.
unfold edf_specific_interference_bound; simpl.
rewrite leq_add2l leq_min; apply/andP; split; first by apply geq_minl.
apply leq_trans with (n := task_deadline tsk %% task_period tsk_other -
(task_deadline tsk_other - R));
[by apply geq_minr | by rewrite 2?leq_sub2l 2?leq_sub2r // leq_sub2l].
}
Qed.
End MonotonicitySpecificBound.
End InterferenceBoundEDF.