Library rt.util.bigcat
Require Import rt.util.tactics rt.util.notation rt.util.bigord.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Lemmas about the big concatenation operator. *)
Section BigCatLemmas.
Lemma mem_bigcat_nat:
∀ (T: eqType) x m n j (f: _ → list T),
m ≤ j < n →
x ∈ (f j) →
x ∈ \cat_(m ≤ i < n) (f i).
Proof.
intros T x m n j f LE IN; move: LE ⇒ /andP LE; des.
rewrite → big_cat_nat with (n := j); simpl; [| by ins | by apply ltnW].
rewrite mem_cat; apply/orP; right.
destruct n; first by rewrite ltn0 in LE0.
rewrite big_nat_recl; last by ins.
by rewrite mem_cat; apply/orP; left.
Qed.
Lemma mem_bigcat_nat_exists :
∀ (T: eqType) x m n (f: nat → list T),
x ∈ \cat_(m ≤ i < n) (f i) →
∃ i, x ∈ (f i) ∧
m ≤ i < n.
Proof.
intros T x m n f IN.
induction n; first by rewrite big_geq // in IN.
destruct (leqP m n); last by rewrite big_geq ?in_nil // ltnW in IN.
rewrite big_nat_recr // /= mem_cat in IN.
move: IN ⇒ /orP [HEAD | TAIL].
{
apply IHn in HEAD; destruct HEAD; ∃ x0; des.
split; first by done.
by apply/andP; split; [by done | by apply ltnW].
}
{
∃ n; split; first by done.
apply/andP; split; [by done | by apply ltnSn].
}
Qed.
Lemma mem_bigcat_ord:
∀ (T: eqType) x n (j: 'I_n) (f: 'I_n → list T),
j < n →
x ∈ (f j) →
x ∈ \cat_(i < n) (f i).
Proof.
intros T x n j f LE IN; rewrite (big_mkord_ord nil).
rewrite -(big_mkord (fun x ⇒ true)).
apply mem_bigcat_nat with (j := j);
[by apply/andP; split | by rewrite eq_fun_ord_to_nat].
Qed.
Lemma mem_bigcat_ord_exists :
∀ (T: eqType) x n (f: 'I_n → list T),
x ∈ \cat_(i < n) (f i) →
∃ i, x ∈ (f i).
Proof.
intros T x n f IN.
induction n; first by rewrite big_ord0 in_nil in IN.
{
rewrite big_ord_recr /= mem_cat in IN.
move: IN ⇒ /orP [HEAD | TAIL].
{
apply IHn in HEAD; destruct HEAD as [x0 IN].
by eexists (widen_ord _ x0); apply IN.
}
{
by ∃ ord_max; desf.
}
}
Qed.
Lemma bigcat_ord_uniq :
∀ (T: eqType) n (f: 'I_n → list T),
(∀ i, uniq (f i)) →
(∀ x i1 i2,
x ∈ (f i1) → x ∈ (f i2) → i1 = i2) →
uniq (\cat_(i < n) (f i)).
Proof.
intros T n f SINGLE UNIQ.
induction n; first by rewrite big_ord0.
{
rewrite big_ord_recr cat_uniq; apply/andP; split.
{
apply IHn; first by done.
intros x i1 i2 IN1 IN2.
exploit (UNIQ x);
[by apply IN1 | by apply IN2 | intro EQ; inversion EQ].
by apply ord_inj.
}
apply /andP; split; last by apply SINGLE.
{
rewrite -all_predC; apply/allP; intros x INx.
simpl; apply/negP; unfold not; intro BUG.
rewrite -big_ord_narrow in BUG.
rewrite big_mkcond /= in BUG.
have EX := mem_bigcat_ord_exists T x n.+1 _.
apply EX in BUG; clear EX; desf.
apply UNIQ with (i1 := ord_max) in BUG; last by done.
by desf; unfold ord_max in *; rewrite /= ltnn in Heq.
}
}
Qed.
Lemma map_bigcat_ord {T} {T'} n (f: 'I_n → seq T) (g: T → T') :
map g (\cat_(i < n) (f i)) = \cat_(i < n) (map g (f i)).
Proof.
destruct n; first by rewrite 2!big_ord0.
induction n; first by rewrite 2!big_ord_recr 2!big_ord0.
rewrite big_ord_recr [\cat_(cpu < n.+2)_]big_ord_recr /=.
by rewrite map_cat; f_equal; apply IHn.
Qed.
Lemma size_bigcat_ord {T} n (f: 'I_n → seq T) :
size (\cat_(i < n) (f i)) = \sum_(i < n) (size (f i)).
Proof.
destruct n; first by rewrite 2!big_ord0.
induction n; first by rewrite 2!big_ord_recr 2!big_ord0 /= add0n.
rewrite big_ord_recr [\sum_(i0 < n.+2)_]big_ord_recr size_cat /=.
by f_equal; apply IHn.
Qed.
Lemma size_bigcat_ord_max {T} n (f: 'I_n → seq T) m :
(∀ x, size (f x) ≤ m) →
size (\cat_(i < n) (f i)) ≤ m×n.
Proof.
intros SIZE.
rewrite size_bigcat_ord.
apply leq_trans with (n := \sum_(i0 < n) m);
last by rewrite big_const_ord iter_addn addn0.
by apply leq_sum; ins; apply SIZE.
Qed.
End BigCatLemmas.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Lemmas about the big concatenation operator. *)
Section BigCatLemmas.
Lemma mem_bigcat_nat:
∀ (T: eqType) x m n j (f: _ → list T),
m ≤ j < n →
x ∈ (f j) →
x ∈ \cat_(m ≤ i < n) (f i).
Proof.
intros T x m n j f LE IN; move: LE ⇒ /andP LE; des.
rewrite → big_cat_nat with (n := j); simpl; [| by ins | by apply ltnW].
rewrite mem_cat; apply/orP; right.
destruct n; first by rewrite ltn0 in LE0.
rewrite big_nat_recl; last by ins.
by rewrite mem_cat; apply/orP; left.
Qed.
Lemma mem_bigcat_nat_exists :
∀ (T: eqType) x m n (f: nat → list T),
x ∈ \cat_(m ≤ i < n) (f i) →
∃ i, x ∈ (f i) ∧
m ≤ i < n.
Proof.
intros T x m n f IN.
induction n; first by rewrite big_geq // in IN.
destruct (leqP m n); last by rewrite big_geq ?in_nil // ltnW in IN.
rewrite big_nat_recr // /= mem_cat in IN.
move: IN ⇒ /orP [HEAD | TAIL].
{
apply IHn in HEAD; destruct HEAD; ∃ x0; des.
split; first by done.
by apply/andP; split; [by done | by apply ltnW].
}
{
∃ n; split; first by done.
apply/andP; split; [by done | by apply ltnSn].
}
Qed.
Lemma mem_bigcat_ord:
∀ (T: eqType) x n (j: 'I_n) (f: 'I_n → list T),
j < n →
x ∈ (f j) →
x ∈ \cat_(i < n) (f i).
Proof.
intros T x n j f LE IN; rewrite (big_mkord_ord nil).
rewrite -(big_mkord (fun x ⇒ true)).
apply mem_bigcat_nat with (j := j);
[by apply/andP; split | by rewrite eq_fun_ord_to_nat].
Qed.
Lemma mem_bigcat_ord_exists :
∀ (T: eqType) x n (f: 'I_n → list T),
x ∈ \cat_(i < n) (f i) →
∃ i, x ∈ (f i).
Proof.
intros T x n f IN.
induction n; first by rewrite big_ord0 in_nil in IN.
{
rewrite big_ord_recr /= mem_cat in IN.
move: IN ⇒ /orP [HEAD | TAIL].
{
apply IHn in HEAD; destruct HEAD as [x0 IN].
by eexists (widen_ord _ x0); apply IN.
}
{
by ∃ ord_max; desf.
}
}
Qed.
Lemma bigcat_ord_uniq :
∀ (T: eqType) n (f: 'I_n → list T),
(∀ i, uniq (f i)) →
(∀ x i1 i2,
x ∈ (f i1) → x ∈ (f i2) → i1 = i2) →
uniq (\cat_(i < n) (f i)).
Proof.
intros T n f SINGLE UNIQ.
induction n; first by rewrite big_ord0.
{
rewrite big_ord_recr cat_uniq; apply/andP; split.
{
apply IHn; first by done.
intros x i1 i2 IN1 IN2.
exploit (UNIQ x);
[by apply IN1 | by apply IN2 | intro EQ; inversion EQ].
by apply ord_inj.
}
apply /andP; split; last by apply SINGLE.
{
rewrite -all_predC; apply/allP; intros x INx.
simpl; apply/negP; unfold not; intro BUG.
rewrite -big_ord_narrow in BUG.
rewrite big_mkcond /= in BUG.
have EX := mem_bigcat_ord_exists T x n.+1 _.
apply EX in BUG; clear EX; desf.
apply UNIQ with (i1 := ord_max) in BUG; last by done.
by desf; unfold ord_max in *; rewrite /= ltnn in Heq.
}
}
Qed.
Lemma map_bigcat_ord {T} {T'} n (f: 'I_n → seq T) (g: T → T') :
map g (\cat_(i < n) (f i)) = \cat_(i < n) (map g (f i)).
Proof.
destruct n; first by rewrite 2!big_ord0.
induction n; first by rewrite 2!big_ord_recr 2!big_ord0.
rewrite big_ord_recr [\cat_(cpu < n.+2)_]big_ord_recr /=.
by rewrite map_cat; f_equal; apply IHn.
Qed.
Lemma size_bigcat_ord {T} n (f: 'I_n → seq T) :
size (\cat_(i < n) (f i)) = \sum_(i < n) (size (f i)).
Proof.
destruct n; first by rewrite 2!big_ord0.
induction n; first by rewrite 2!big_ord_recr 2!big_ord0 /= add0n.
rewrite big_ord_recr [\sum_(i0 < n.+2)_]big_ord_recr size_cat /=.
by f_equal; apply IHn.
Qed.
Lemma size_bigcat_ord_max {T} n (f: 'I_n → seq T) m :
(∀ x, size (f x) ≤ m) →
size (\cat_(i < n) (f i)) ≤ m×n.
Proof.
intros SIZE.
rewrite size_bigcat_ord.
apply leq_trans with (n := \sum_(i0 < n) m);
last by rewrite big_const_ord iter_addn addn0.
by apply leq_sum; ins; apply SIZE.
Qed.
End BigCatLemmas.