Library rt.util.counting
Require Import rt.util.tactics rt.util.ord_quantifier.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Additional lemmas about counting. *)
Section Counting.
Lemma count_or :
∀ (T: eqType) (l: seq T) P Q,
count (fun x ⇒ P x ∨ Q x) l ≤ count P l + count Q l.
Proof.
intros T l P Q; rewrite -count_predUI.
apply leq_trans with (n := count (predU P Q) l);
last by apply leq_addr.
by apply sub_count; red; unfold predU; simpl.
Qed.
Lemma sub_in_count :
∀ (T: eqType) (l: seq T) (P1 P2: T → bool),
(∀ x, x ∈ l → P1 x → P2 x) →
count P1 l ≤ count P2 l.
Proof.
intros T l P1 P2 SUB.
apply leq_trans with (n := count (fun x ⇒ P1 x ∧ (x ∈ l)) l);
first by apply eq_leq, eq_in_count; red; move ⇒ x INx; rewrite INx andbT.
by apply sub_count; red; move ⇒ x /andP [Px INx]; apply SUB.
Qed.
Lemma count_sub_uniqr :
∀ (T: eqType) (l1 l2: seq T) P,
uniq l1 →
{subset l1 ≤ l2} →
count P l1 ≤ count P l2.
Proof.
intros T l1 l2 P UNIQ SUB.
rewrite -!size_filter uniq_leq_size ?filter_uniq // ⇒ x.
by rewrite !mem_filter =>/andP [-> /SUB].
Qed.
Lemma count_pred_inj :
∀ (T: eqType) (l: seq T) (P: T → bool),
uniq l →
(∀ x1 x2, P x1 → P x2 → x1 = x2) →
count P l ≤ 1.
Proof.
intros T l P UNIQ INJ.
induction l as [| x l']; [by done | simpl in *].
{
move: UNIQ ⇒ /andP [NOTIN UNIQ].
specialize (IHl' UNIQ).
rewrite leq_eqVlt in IHl'.
move: IHl' ⇒ /orP [/eqP ONE | ZERO]; last first.
{
rewrite ltnS leqn0 in ZERO.
by move: ZERO ⇒ /eqP ->; rewrite addn0 leq_b1.
}
destruct (P x) eqn:Px; last by rewrite add0n ONE.
{
move: ONE ⇒ /eqP ONE.
rewrite eqn_leq in ONE; move: ONE ⇒ /andP [_ ONE].
rewrite -has_count in ONE.
move: ONE ⇒ /hasP ONE; destruct ONE as [y IN Py].
specialize (INJ x y Px Py); subst.
by rewrite IN in NOTIN.
}
}
Qed.
Lemma count_exists :
∀ (T: eqType) (l: seq T) n (P: T → 'I_n → bool),
uniq l →
(∀ y x1 x2, P x1 y → P x2 y → x1 = x2) →
count (fun (y: T) ⇒ [∃ x in 'I_n, P y x]) l ≤ n.
Proof.
intros T l n P UNIQ INJ.
induction n.
{
apply leq_trans with (n := count pred0 l); last by rewrite count_pred0.
apply sub_count; red; intro x.
by rewrite exists_ord0 //.
}
{
apply leq_trans with (n := n + 1); last by rewrite addn1.
apply leq_trans with (n := count (fun y ⇒ [∃ x in 'I_n, P y (widen_ord (leqnSn n) x)] ∨ P y ord_max) l).
{
apply eq_leq, eq_count; red; intro x.
by rewrite exists_recr //.
}
eapply (leq_trans (count_or _ _ _ _)).
apply leq_add.
{
apply IHn.
{
intros y x1 x2 P1 P2.
by specialize (INJ (widen_ord (leqnSn n) y) x1 x2 P1 P2).
}
}
{
apply count_pred_inj; first by done.
by intros x1 x2 P1 P2; apply INJ with (y := ord_max).
}
}
Qed.
End Counting.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.
(* Additional lemmas about counting. *)
Section Counting.
Lemma count_or :
∀ (T: eqType) (l: seq T) P Q,
count (fun x ⇒ P x ∨ Q x) l ≤ count P l + count Q l.
Proof.
intros T l P Q; rewrite -count_predUI.
apply leq_trans with (n := count (predU P Q) l);
last by apply leq_addr.
by apply sub_count; red; unfold predU; simpl.
Qed.
Lemma sub_in_count :
∀ (T: eqType) (l: seq T) (P1 P2: T → bool),
(∀ x, x ∈ l → P1 x → P2 x) →
count P1 l ≤ count P2 l.
Proof.
intros T l P1 P2 SUB.
apply leq_trans with (n := count (fun x ⇒ P1 x ∧ (x ∈ l)) l);
first by apply eq_leq, eq_in_count; red; move ⇒ x INx; rewrite INx andbT.
by apply sub_count; red; move ⇒ x /andP [Px INx]; apply SUB.
Qed.
Lemma count_sub_uniqr :
∀ (T: eqType) (l1 l2: seq T) P,
uniq l1 →
{subset l1 ≤ l2} →
count P l1 ≤ count P l2.
Proof.
intros T l1 l2 P UNIQ SUB.
rewrite -!size_filter uniq_leq_size ?filter_uniq // ⇒ x.
by rewrite !mem_filter =>/andP [-> /SUB].
Qed.
Lemma count_pred_inj :
∀ (T: eqType) (l: seq T) (P: T → bool),
uniq l →
(∀ x1 x2, P x1 → P x2 → x1 = x2) →
count P l ≤ 1.
Proof.
intros T l P UNIQ INJ.
induction l as [| x l']; [by done | simpl in *].
{
move: UNIQ ⇒ /andP [NOTIN UNIQ].
specialize (IHl' UNIQ).
rewrite leq_eqVlt in IHl'.
move: IHl' ⇒ /orP [/eqP ONE | ZERO]; last first.
{
rewrite ltnS leqn0 in ZERO.
by move: ZERO ⇒ /eqP ->; rewrite addn0 leq_b1.
}
destruct (P x) eqn:Px; last by rewrite add0n ONE.
{
move: ONE ⇒ /eqP ONE.
rewrite eqn_leq in ONE; move: ONE ⇒ /andP [_ ONE].
rewrite -has_count in ONE.
move: ONE ⇒ /hasP ONE; destruct ONE as [y IN Py].
specialize (INJ x y Px Py); subst.
by rewrite IN in NOTIN.
}
}
Qed.
Lemma count_exists :
∀ (T: eqType) (l: seq T) n (P: T → 'I_n → bool),
uniq l →
(∀ y x1 x2, P x1 y → P x2 y → x1 = x2) →
count (fun (y: T) ⇒ [∃ x in 'I_n, P y x]) l ≤ n.
Proof.
intros T l n P UNIQ INJ.
induction n.
{
apply leq_trans with (n := count pred0 l); last by rewrite count_pred0.
apply sub_count; red; intro x.
by rewrite exists_ord0 //.
}
{
apply leq_trans with (n := n + 1); last by rewrite addn1.
apply leq_trans with (n := count (fun y ⇒ [∃ x in 'I_n, P y (widen_ord (leqnSn n) x)] ∨ P y ord_max) l).
{
apply eq_leq, eq_count; red; intro x.
by rewrite exists_recr //.
}
eapply (leq_trans (count_or _ _ _ _)).
apply leq_add.
{
apply IHn.
{
intros y x1 x2 P1 P2.
by specialize (INJ (widen_ord (leqnSn n) y) x1 x2 P1 P2).
}
}
{
apply count_pred_inj; first by done.
by intros x1 x2 P1 P2; apply INJ with (y := ord_max).
}
}
Qed.
End Counting.