Library rt.util.fixedpoint

Require Import rt.util.tactics rt.util.induction.
From mathcomp Require Import ssreflect ssrbool eqtype ssrnat seq fintype bigop.

Section FixedPoint.

  Lemma iter_fix T (F : T T) x k n :
    iter k F x = iter k.+1 F x
    k n
    iter n F x = iter n.+1 F x.
  Proof.
    movee. elim: n. rewrite leqn0. by move/eqP<-.
    moven IH. rewrite leq_eqVlt; case/orP; first by move/eqP<-.
    move/IH ⇒ /= IHe. by rewrite -!IHe.
  Qed.

  Lemma fun_mon_iter_mon :
     (f: nat nat) x0 x1 x2,
      x1 x2
      f x0 x0
      ( x1 x2, x1 x2 f x1 f x2)
      iter x1 f x0 iter x2 f x0.
  Proof.
    intros f x0 x1 x2 LE MIN MON.
    revert LE; revert x2; rewrite leq_as_delta; intros delta.
    induction x1; try rewrite add0n.
    {
      induction delta; first by apply leqnn.
      apply leq_trans with (n := iter delta f x0); first by done.
      clear IHdelta.
      induction delta; first by done.
      {
        rewrite 2!iterS; apply MON.
        apply IHdelta.
      }
    }
    {
      rewrite iterS -addn1 -addnA [1 + delta]addnC addnA addn1 iterS.
      by apply MON, IHx1.
    }
  Qed.

  Lemma fun_mon_iter_mon_helper :
     T (f: T T) (le: rel T) x0 x1,
      reflexive le
      transitive le
      ( x2, le x0 (iter x2 f x0))
      ( x1 x2, le x0 x1 le x1 x2 le (f x1) (f x2))
      le (iter x1 f x0) (iter x1.+1 f x0).
  Proof.
    intros T f le x0 x1 REFL TRANS MIN MON.
    generalize dependent x0.
    induction x1; first by ins; apply (MIN 1).
    by ins; apply MON; [by apply MIN | by apply IHx1].
  Qed.

  Lemma fun_mon_iter_mon_generic :
     T (f: T T) (le: rel T) x0 x1 x2,
      reflexive le
      transitive le
      x1 x2
      ( x1 x2, le x0 x1 le x1 x2 le (f x1) (f x2))
      ( x2 : nat, le x0 (iter x2 f x0))
      le (iter x1 f x0) (iter x2 f x0).
  Proof.
    intros T f le x0 x1 x2 REFL TRANS LE MON MIN.
    revert LE; revert x2; rewrite leq_as_delta; intros delta.
    induction delta; first by rewrite addn0; apply REFL.
    apply (TRANS) with (y := iter (x1 + delta) f x0);
      first by apply IHdelta.
    by rewrite addnS; apply fun_mon_iter_mon_helper.
  Qed.

End FixedPoint.