Library prosa.analysis.facts.preemption.task.nonpreemptive

Furthermore, we assume the fully non-preemptive task model.

Platform for Fully Non-Preemptive Model

In this section, we prove that instantiation of functions job_preemptable and task_max_nonpreemptive_segment to the fully non-preemptive model indeed defines a valid preemption model with bounded non-preemptive regions.
Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{TaskCost Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.

Consider any arrival sequence with consistent arrivals.
Next, consider any ideal non-preemptive uni-processor schedule of this arrival sequence...
... where jobs do not execute before their arrival or after completion.
Assume that a job cost cannot be larger than a task cost.
Then we prove that fully_nonpreemptive_model function defines a model with bounded non-preemptive regions.
  Lemma fully_nonpreemptive_model_is_model_with_bounded_nonpreemptive_regions:
    model_with_bounded_nonpreemptive_segments arr_seq.
  Proof.
    have F: n, n = 0 n > 0 by intros n; destruct n; [left | right].
    intros j; split.
    { rewrite /job_respects_max_nonpreemptive_segment; eauto 2.
      erewrite job_max_nps_is_job_cost; eauto 2.
    }
    moveprogr /andP [_ GE].
    move: (F (progr)) ⇒ [EQ | GT].
    { progr; split.
        - by apply/andP; split; [done | rewrite leq_addr].
        - rewrite /job_preemptable /fully_nonpreemptive_model.
            by apply/orP; left; rewrite EQ.
    }
    { (maxn progr (job_cost j)).
      have POS: 0 < job_cost j by apply leq_trans with progr.
      split.
      { apply/andP; split; first by rewrite leq_maxl.
        erewrite job_max_nps_is_job_cost; eauto 2; rewrite addnBA; last eauto 2.
        rewrite geq_max; apply/andP; split.
          - rewrite -addnBA; last by eauto 2.
              by rewrite leq_addr.
          - by rewrite addnC -addnBA // leq_addr.
      }
      { apply/orP; right.
        rewrite eqn_leq; apply/andP; split.
        - by rewrite geq_max; apply/andP; split.
        - by rewrite leq_max; apply/orP; right.
      }
    }
  Qed.

Which together with lemma valid_fully_nonpreemptive_model gives us the fact that fully_nonpreemptive_model defined a valid preemption model with bounded non-preemptive regions.
We add the above lemma into a "Hint Database" basic_facts, so Coq will be able to apply them automatically.
Hint Resolve
     valid_fully_nonpreemptive_model
     fully_nonpreemptive_model_is_model_with_bounded_nonpreemptive_regions
     fully_nonpreemptive_model_is_valid_model_with_bounded_nonpreemptive_regions : basic_facts.