Library prosa.analysis.facts.model.overheads.blackout_bound
In this file, we prove a bound on the total blackout time (i.e.,
time during which no job makes progress due to overheads),
assuming a given number of schedule changes.
Consider any type of jobs.
Consider a JLFP-policy that indicates a higher-or-equal priority
relation, and assume that this relation is reflexive and
transitive.
Context {JLFP : JLFP_policy Job}.
Hypothesis H_priority_is_reflexive : reflexive_job_priorities JLFP.
Hypothesis H_priority_is_transitive : transitive_job_priorities JLFP.
Hypothesis H_priority_is_reflexive : reflexive_job_priorities JLFP.
Hypothesis H_priority_is_transitive : transitive_job_priorities JLFP.
Consider any valid arrival sequence, ...
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
... and any schedule of this arrival sequence...
... where jobs do not execute before their arrival nor after completion.
Hypothesis H_jobs_come_from_arrival_sequence : jobs_come_from_arrival_sequence sched arr_seq.
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Hypothesis H_jobs_must_arrive_to_execute : jobs_must_arrive_to_execute sched.
Finally, we assume that the schedule respects a valid overhead
resource model with dispatch overhead DB, context switch
overhead CSB, and preemption-related overhead CRPDB.
Variable DB CSB CRPDB : duration.
Hypothesis H_valid_overheads_model :
overhead_resource_model sched DB CSB CRPDB.
Hypothesis H_valid_overheads_model :
overhead_resource_model sched DB CSB CRPDB.
The total blackout duration in the interval
[t1, t2)
can be
decomposed into time spent in dispatching, context switching,
and CRPD (cache-related preemption delay).
Lemma blackout_during_split :
∀ (t1 t2 : instant),
blackout_during sched t1 t2
= total_time_in_dispatch sched t1 t2
+ total_time_in_context_switch sched t1 t2
+ total_time_in_CRPD sched t1 t2.
Proof.
move ⇒ t1 t2.
rewrite /blackout_during /total_time_in_dispatch /total_time_in_context_switch /total_time_in_CRPD.
rewrite -!big_split //= big_nat_cond [RHS]big_nat_cond; apply eq_bigr ⇒ t /andP [NEQ _].
rewrite /is_blackout /has_supply -eqn0Ngt /supply_at /is_dispatch /is_context_switch /is_CRPD.
by destruct (sched t) eqn:EQ; rewrite /supply_in //= sum_unit1.
Qed.
∀ (t1 t2 : instant),
blackout_during sched t1 t2
= total_time_in_dispatch sched t1 t2
+ total_time_in_context_switch sched t1 t2
+ total_time_in_CRPD sched t1 t2.
Proof.
move ⇒ t1 t2.
rewrite /blackout_during /total_time_in_dispatch /total_time_in_context_switch /total_time_in_CRPD.
rewrite -!big_split //= big_nat_cond [RHS]big_nat_cond; apply eq_bigr ⇒ t /andP [NEQ _].
rewrite /is_blackout /has_supply -eqn0Ngt /supply_at /is_dispatch /is_context_switch /is_CRPD.
by destruct (sched t) eqn:EQ; rewrite /supply_in //= sum_unit1.
Qed.
If there are no schedule changes in the interval
[t1, t2)
,
then the processor must always be scheduling the same job (or be
idle). In that case, the total dispatch time in that interval is
equal to the time spent dispatching a specific job (or be
idle).
Lemma total_dispatch_time_eq_job_dispatch_time :
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
∃ (oj : option Job),
total_time_in_dispatch sched t1 t2
= time_spent_in_dispatch sched oj t1 t2.
Proof.
move⇒ t1 t2 NSC.
have [IDLE|[j SCHED]] := scheduled_job_dec sched t1.
{ ∃ None.
rewrite /total_time_in_dispatch /time_spent_in_dispatch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in IDLE; [ by erewrite IDLE | | | ] ⇒ //; lia.
}
{ ∃ (Some j).
rewrite /total_time_in_dispatch /time_spent_in_dispatch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in SCHED; [ erewrite SCHED, eq_refl | | | ] ⇒ //; lia.
}
Qed.
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
∃ (oj : option Job),
total_time_in_dispatch sched t1 t2
= time_spent_in_dispatch sched oj t1 t2.
Proof.
move⇒ t1 t2 NSC.
have [IDLE|[j SCHED]] := scheduled_job_dec sched t1.
{ ∃ None.
rewrite /total_time_in_dispatch /time_spent_in_dispatch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in IDLE; [ by erewrite IDLE | | | ] ⇒ //; lia.
}
{ ∃ (Some j).
rewrite /total_time_in_dispatch /time_spent_in_dispatch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in SCHED; [ erewrite SCHED, eq_refl | | | ] ⇒ //; lia.
}
Qed.
Similar statements are true for context-switch overhead...
Lemma total_cswitch_time_eq_job_cswitch_time :
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
∃ (oj : option Job),
total_time_in_context_switch sched t1 t2
= time_spent_in_context_switch sched oj t1 t2.
Proof.
move⇒ t1 t2 NSC.
have [IDLE|[j SCHED]] := scheduled_job_dec sched t1.
{ ∃ None.
rewrite /total_time_in_context_switch /time_spent_in_context_switch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in IDLE; [ by erewrite IDLE | | | ] ⇒ //; lia.
}
{ ∃ (Some j).
rewrite /total_time_in_context_switch /time_spent_in_context_switch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in SCHED; [ erewrite SCHED, eq_refl | | | ] ⇒ //; lia.
}
Qed.
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
∃ (oj : option Job),
total_time_in_context_switch sched t1 t2
= time_spent_in_context_switch sched oj t1 t2.
Proof.
move⇒ t1 t2 NSC.
have [IDLE|[j SCHED]] := scheduled_job_dec sched t1.
{ ∃ None.
rewrite /total_time_in_context_switch /time_spent_in_context_switch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in IDLE; [ by erewrite IDLE | | | ] ⇒ //; lia.
}
{ ∃ (Some j).
rewrite /total_time_in_context_switch /time_spent_in_context_switch big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in SCHED; [ erewrite SCHED, eq_refl | | | ] ⇒ //; lia.
}
Qed.
... and CRPD.
Lemma total_CRPD_time_eq_job_CRPD_time :
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
∃ (oj : option Job),
total_time_in_CRPD sched t1 t2
= time_spent_in_CRPD sched oj t1 t2.
Proof.
move⇒ t1 t2 NSC.
have [IDLE|[j SCHED]] := scheduled_job_dec sched t1.
{ ∃ None.
rewrite /total_time_in_CRPD /time_spent_in_CRPD big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in IDLE; [ by erewrite IDLE | | | ] ⇒ //; lia.
}
{ ∃ (Some j).
rewrite /total_time_in_CRPD /time_spent_in_CRPD big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in SCHED; [ erewrite SCHED, eq_refl | | | ] ⇒ //; lia.
}
Qed.
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
∃ (oj : option Job),
total_time_in_CRPD sched t1 t2
= time_spent_in_CRPD sched oj t1 t2.
Proof.
move⇒ t1 t2 NSC.
have [IDLE|[j SCHED]] := scheduled_job_dec sched t1.
{ ∃ None.
rewrite /total_time_in_CRPD /time_spent_in_CRPD big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in IDLE; [ by erewrite IDLE | | | ] ⇒ //; lia.
}
{ ∃ (Some j).
rewrite /total_time_in_CRPD /time_spent_in_CRPD big_nat_cond [RHS]big_nat_cond.
apply: eq_bigr ⇒ t /andP [NEQ _].
by eapply no_changes_implies_same_scheduled_job in SCHED; [ erewrite SCHED, eq_refl | | | ] ⇒ //; lia.
}
Qed.
If there are no schedule changes in
[t1, t2)
, then the
processor must be scheduling the same job (or be idle)
throughout. In that case, since the dispatch time spent on a
specific job is bounded by DB, the total dispatch time in
[t1, t2)
is also bounded by DB.
Lemma total_time_in_dispatch_is_bounded :
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
total_time_in_dispatch sched t1 t2 ≤ DB.
Proof.
move⇒ t1 t2 NSI; move: (NSI) ⇒ NSI2.
have [Z|POS] := posnP (total_time_in_dispatch sched t1 t2); first by rewrite Z.
apply total_dispatch_time_eq_job_dispatch_time in NSI2; destruct NSI2 as [oj EQ]; rewrite EQ.
rewrite EQ in POS; clear EQ.
move: POS; rewrite sum_nat_gt0 //= ⇒ /hasP [t]; rewrite mem_filter //= mem_index_iota.
move⇒ NEQ; rewrite lt0b ⇒ /andP [/eqP SCHED] _.
apply H_valid_overheads_model.
apply/allP ⇒ t'; rewrite mem_index_iota ⇒ NEQ'; apply/eqP.
by apply: no_changes_implies_same_scheduled_job; try apply SCHED.
Qed.
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
total_time_in_dispatch sched t1 t2 ≤ DB.
Proof.
move⇒ t1 t2 NSI; move: (NSI) ⇒ NSI2.
have [Z|POS] := posnP (total_time_in_dispatch sched t1 t2); first by rewrite Z.
apply total_dispatch_time_eq_job_dispatch_time in NSI2; destruct NSI2 as [oj EQ]; rewrite EQ.
rewrite EQ in POS; clear EQ.
move: POS; rewrite sum_nat_gt0 //= ⇒ /hasP [t]; rewrite mem_filter //= mem_index_iota.
move⇒ NEQ; rewrite lt0b ⇒ /andP [/eqP SCHED] _.
apply H_valid_overheads_model.
apply/allP ⇒ t'; rewrite mem_index_iota ⇒ NEQ'; apply/eqP.
by apply: no_changes_implies_same_scheduled_job; try apply SCHED.
Qed.
Same reasoning holds for context switches...
Lemma total_time_in_cswitch_is_bounded :
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
total_time_in_context_switch sched t1 t2 ≤ CSB.
Proof.
move⇒ t1 t2 NSI; move: (NSI) ⇒ NSI2.
have [Z|POS] := posnP (total_time_in_context_switch sched t1 t2); first by rewrite Z.
apply total_cswitch_time_eq_job_cswitch_time in NSI2; destruct NSI2 as [oj EQ]; rewrite EQ.
rewrite EQ in POS; clear EQ.
move: POS; rewrite sum_nat_gt0 //= ⇒ /hasP [t]; rewrite mem_filter //= mem_index_iota.
move⇒ NEQ; rewrite lt0b ⇒ /andP [/eqP SCHED] _.
apply H_valid_overheads_model.
apply/allP ⇒ t'; rewrite mem_index_iota ⇒ NEQ'; apply/eqP.
by apply: no_changes_implies_same_scheduled_job; try apply SCHED.
Qed.
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
total_time_in_context_switch sched t1 t2 ≤ CSB.
Proof.
move⇒ t1 t2 NSI; move: (NSI) ⇒ NSI2.
have [Z|POS] := posnP (total_time_in_context_switch sched t1 t2); first by rewrite Z.
apply total_cswitch_time_eq_job_cswitch_time in NSI2; destruct NSI2 as [oj EQ]; rewrite EQ.
rewrite EQ in POS; clear EQ.
move: POS; rewrite sum_nat_gt0 //= ⇒ /hasP [t]; rewrite mem_filter //= mem_index_iota.
move⇒ NEQ; rewrite lt0b ⇒ /andP [/eqP SCHED] _.
apply H_valid_overheads_model.
apply/allP ⇒ t'; rewrite mem_index_iota ⇒ NEQ'; apply/eqP.
by apply: no_changes_implies_same_scheduled_job; try apply SCHED.
Qed.
... and CRPD.
Lemma total_time_in_CRPD_is_bounded :
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
total_time_in_CRPD sched t1 t2 ≤ CRPDB.
Proof.
move⇒ t1 t2 NSI; move: (NSI) ⇒ NSI2.
have [Z|POS] := posnP (total_time_in_CRPD sched t1 t2); first by rewrite Z.
apply total_CRPD_time_eq_job_CRPD_time in NSI2; destruct NSI2 as [oj EQ]; rewrite EQ.
rewrite EQ in POS; clear EQ.
move: POS; rewrite sum_nat_gt0 //= ⇒ /hasP [t]; rewrite mem_filter //= mem_index_iota.
move⇒ NEQ; rewrite lt0b ⇒ /andP [/eqP SCHED] _.
apply H_valid_overheads_model.
apply/allP ⇒ t'; rewrite mem_index_iota ⇒ NEQ'; apply/eqP.
by apply: no_changes_implies_same_scheduled_job; try apply SCHED.
Qed.
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
total_time_in_CRPD sched t1 t2 ≤ CRPDB.
Proof.
move⇒ t1 t2 NSI; move: (NSI) ⇒ NSI2.
have [Z|POS] := posnP (total_time_in_CRPD sched t1 t2); first by rewrite Z.
apply total_CRPD_time_eq_job_CRPD_time in NSI2; destruct NSI2 as [oj EQ]; rewrite EQ.
rewrite EQ in POS; clear EQ.
move: POS; rewrite sum_nat_gt0 //= ⇒ /hasP [t]; rewrite mem_filter //= mem_index_iota.
move⇒ NEQ; rewrite lt0b ⇒ /andP [/eqP SCHED] _.
apply H_valid_overheads_model.
apply/allP ⇒ t'; rewrite mem_index_iota ⇒ NEQ'; apply/eqP.
by apply: no_changes_implies_same_scheduled_job; try apply SCHED.
Qed.
If there are no schedule changes in the interval
We exclude t1 from the schedule-change check because a change
between t1−1 and t1 is irrelevant for bounding blackout in
[t1+1, t2)
,
then the processor executes the same job (or remains idle)
throughout the interval [t1, t2)
, possibly with some initial
scheduling activity at t1. In that case, the total blackout
time in [t1, t2)
is at most the sum of: dispatch overhead
(DB), a context switch before (CSB), and cache-related
preemption delay (CRPD).
[t1, t2)
as it only affects the boundary.
Lemma no_sched_changes_bounded_overheads_blackout :
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
blackout_during sched t1 t2 ≤ DB + CSB + CRPDB.
Proof.
move⇒ t1 t2 SINT.
rewrite blackout_during_split; apply leq_add; first apply leq_add.
{ by eapply total_time_in_dispatch_is_bounded. }
{ by eapply total_time_in_cswitch_is_bounded. }
{ by eapply total_time_in_CRPD_is_bounded. }
Qed.
∀ (t1 t2 : instant),
no_schedule_changes_during sched t1 t2 →
blackout_during sched t1 t2 ≤ DB + CSB + CRPDB.
Proof.
move⇒ t1 t2 SINT.
rewrite blackout_during_split; apply leq_add; first apply leq_add.
{ by eapply total_time_in_dispatch_is_bounded. }
{ by eapply total_time_in_cswitch_is_bounded. }
{ by eapply total_time_in_CRPD_is_bounded. }
Qed.
If there is exactly one schedule change in the interval
[t1,
t2)>>, and it occurs at the very beginning (i.e., at t1), then
the processor schedules a job at t1 and continues executing
the same job (or stays idle) for the rest of the interval.
Lemma sched_changes_start_busy_pref_bounded_overheads_blackout :
∀ (t1 t2 : instant),
number_schedule_changes sched t1 t2 = 1 →
schedule_change sched t1 →
blackout_during sched t1 t2 ≤ DB + CSB + CRPDB.
Proof.
move⇒ t1 t2 EQ SC.
have [NEQ|LT] := leqP t2 t1.
{ by rewrite /blackout_during big_geq //. }
apply no_sched_changes_bounded_overheads_blackout.
rewrite (number_schedule_changes_cat _ t1.+1) in EQ; last first.
{ lia. }
{ have EQ1: number_schedule_changes sched t1 t1.+1 = 1.
{ by rewrite /number_schedule_changes /index_iota -addn1 addKn //= SC. }
rewrite /no_schedule_changes_during; lia.
}
Qed.
∀ (t1 t2 : instant),
number_schedule_changes sched t1 t2 = 1 →
schedule_change sched t1 →
blackout_during sched t1 t2 ≤ DB + CSB + CRPDB.
Proof.
move⇒ t1 t2 EQ SC.
have [NEQ|LT] := leqP t2 t1.
{ by rewrite /blackout_during big_geq //. }
apply no_sched_changes_bounded_overheads_blackout.
rewrite (number_schedule_changes_cat _ t1.+1) in EQ; last first.
{ lia. }
{ have EQ1: number_schedule_changes sched t1 t1.+1 = 1.
{ by rewrite /number_schedule_changes /index_iota -addn1 addKn //= SC. }
rewrite /no_schedule_changes_during; lia.
}
Qed.
If there are exactly k schedule changes in the interval
[t1,
t2)>>, and one of them occurs at the beginning (i.e., at t1),
then the blackout time over the interval is bounded by (DB +
CSB + CRPDB) × k.
Lemma fin_sched_changes_start_busy_pref_bounded_overheads_blackout :
∀ (k : nat) (t1 t2 : instant),
schedule_change sched t1 →
number_schedule_changes sched t1 t2 = k →
blackout_during sched t1 t2 ≤ (DB + CSB + CRPDB) × k.
Proof.
move⇒ k.
have [B EX]: ∃ B, k ≤ B by (∃ k).
move: k EX; induction B as [ | B IHB] ⇒ k.
{ rewrite leqn0 ⇒ /eqP EQ; subst k ⇒ t1 t2 SC EQ.
have [NEQ|LT] := leqP t2 t1; first by rewrite /blackout_during big_geq //.
exfalso; move: EQ ⇒ /eqP; rewrite eqn0Ngt ⇒ /negP EQ; apply: EQ.
rewrite /number_schedule_changes -has_count; apply/hasP; ∃ t1.
- by rewrite mem_index_iota; lia.
- by done.
}
{ rewrite leq_eqVlt ⇒ /orP [/eqP EQ | LE]; last by rewrite ltnS in LE; apply IHB.
subst ⇒ t1 t2 SC EQ.
have [NEQ|LT] := leqP t2 t1; [by rewrite /blackout_during big_geq // | ].
have [Z|POS] := posnP B; [by subst; rewrite muln1; apply sched_changes_start_busy_pref_bounded_overheads_blackout | ].
have [t [LEQ DECt]]: ∃ t, t1 < t < t2 ∧ schedule_change sched t.
{ clear IHB; rewrite (number_schedule_changes_cat _ t1.+1) in EQ; last by lia.
{ have EQ1: number_schedule_changes sched t1 t1.+1 = 1
by rewrite / number_schedule_changes /index_iota -addn1 addKn //= SC.
rewrite EQ1 addnC addn1 in EQ; clear EQ1.
apply eq_add_S in EQ.
move: POS; rewrite -EQ /number_schedule_changes -has_count ⇒ /hasP [to].
by rewrite mem_index_iota ⇒ NEQ DECto; ∃ to.
}
}
rewrite -(blackout_during_cat _ _ _ t); last by lia.
have [nldp EQ1] : ∃ nldp, number_schedule_changes sched t1 t = nldp by eexists; reflexivity.
have [nrdp EQ2] : ∃ nrdp, number_schedule_changes sched t t2 = nrdp by eexists; reflexivity.
have EQ3: nldp + nrdp = B.+1 by subst; rewrite -EQ -number_schedule_changes_cat //; lia.
have EQ4: (nldp > 0) && (nrdp > 0).
{ by apply/andP; split; [rewrite -EQ1 | rewrite -EQ2];
rewrite /number_schedule_changes -has_count;
apply /hasP; [∃ t1 | ∃ t] ⇒ //; rewrite mem_index_iota; lia.
}
by rewrite -EQ3 mulnDr; apply leq_add; apply IHB ⇒ //; lia.
}
Qed.
∀ (k : nat) (t1 t2 : instant),
schedule_change sched t1 →
number_schedule_changes sched t1 t2 = k →
blackout_during sched t1 t2 ≤ (DB + CSB + CRPDB) × k.
Proof.
move⇒ k.
have [B EX]: ∃ B, k ≤ B by (∃ k).
move: k EX; induction B as [ | B IHB] ⇒ k.
{ rewrite leqn0 ⇒ /eqP EQ; subst k ⇒ t1 t2 SC EQ.
have [NEQ|LT] := leqP t2 t1; first by rewrite /blackout_during big_geq //.
exfalso; move: EQ ⇒ /eqP; rewrite eqn0Ngt ⇒ /negP EQ; apply: EQ.
rewrite /number_schedule_changes -has_count; apply/hasP; ∃ t1.
- by rewrite mem_index_iota; lia.
- by done.
}
{ rewrite leq_eqVlt ⇒ /orP [/eqP EQ | LE]; last by rewrite ltnS in LE; apply IHB.
subst ⇒ t1 t2 SC EQ.
have [NEQ|LT] := leqP t2 t1; [by rewrite /blackout_during big_geq // | ].
have [Z|POS] := posnP B; [by subst; rewrite muln1; apply sched_changes_start_busy_pref_bounded_overheads_blackout | ].
have [t [LEQ DECt]]: ∃ t, t1 < t < t2 ∧ schedule_change sched t.
{ clear IHB; rewrite (number_schedule_changes_cat _ t1.+1) in EQ; last by lia.
{ have EQ1: number_schedule_changes sched t1 t1.+1 = 1
by rewrite / number_schedule_changes /index_iota -addn1 addKn //= SC.
rewrite EQ1 addnC addn1 in EQ; clear EQ1.
apply eq_add_S in EQ.
move: POS; rewrite -EQ /number_schedule_changes -has_count ⇒ /hasP [to].
by rewrite mem_index_iota ⇒ NEQ DECto; ∃ to.
}
}
rewrite -(blackout_during_cat _ _ _ t); last by lia.
have [nldp EQ1] : ∃ nldp, number_schedule_changes sched t1 t = nldp by eexists; reflexivity.
have [nrdp EQ2] : ∃ nrdp, number_schedule_changes sched t t2 = nrdp by eexists; reflexivity.
have EQ3: nldp + nrdp = B.+1 by subst; rewrite -EQ -number_schedule_changes_cat //; lia.
have EQ4: (nldp > 0) && (nrdp > 0).
{ by apply/andP; split; [rewrite -EQ1 | rewrite -EQ2];
rewrite /number_schedule_changes -has_count;
apply /hasP; [∃ t1 | ∃ t] ⇒ //; rewrite mem_index_iota; lia.
}
by rewrite -EQ3 mulnDr; apply leq_add; apply IHB ⇒ //; lia.
}
Qed.
If there are exactly k schedule changes in the interval
[t1+1, t2)
, then the total blackout time in [t1, t2)
is
at most (DB + CSB + CRPDB) × (k + 1).
Lemma finite_sched_changes_bounded_overheads_blackout :
∀ (k : nat) (t1 t2 : instant),
number_schedule_changes sched t1.+1 t2 = k →
blackout_during sched t1 t2 ≤ (DB + CSB + CRPDB) × (k + 1).
Proof.
move ⇒ k.
have [Z|POS] := posnP k.
{ subst; move ⇒ t1 t2 NSC0.
rewrite add0n muln1; apply no_sched_changes_bounded_overheads_blackout.
by rewrite /no_schedule_changes_during NSC0.
}
{ move ⇒ t1 t2 NSC.
have [t [NEQ [SC [NSC1 NSC2]]]] := first_schedule_change_exists _ _ _ _ POS NSC.
rewrite mulnDr -(blackout_during_cat _ _ _ t); last by lia.
rewrite addnC leq_add //.
{ by apply fin_sched_changes_start_busy_pref_bounded_overheads_blackout. }
{ rewrite muln1; apply no_sched_changes_bounded_overheads_blackout.
by rewrite /no_schedule_changes_during NSC1.
}
}
Qed.
End TotalBlackoutDueToOverheadsBounded.
∀ (k : nat) (t1 t2 : instant),
number_schedule_changes sched t1.+1 t2 = k →
blackout_during sched t1 t2 ≤ (DB + CSB + CRPDB) × (k + 1).
Proof.
move ⇒ k.
have [Z|POS] := posnP k.
{ subst; move ⇒ t1 t2 NSC0.
rewrite add0n muln1; apply no_sched_changes_bounded_overheads_blackout.
by rewrite /no_schedule_changes_during NSC0.
}
{ move ⇒ t1 t2 NSC.
have [t [NEQ [SC [NSC1 NSC2]]]] := first_schedule_change_exists _ _ _ _ POS NSC.
rewrite mulnDr -(blackout_during_cat _ _ _ t); last by lia.
rewrite addnC leq_add //.
{ by apply fin_sched_changes_start_busy_pref_bounded_overheads_blackout. }
{ rewrite muln1; apply no_sched_changes_bounded_overheads_blackout.
by rewrite /no_schedule_changes_during NSC1.
}
}
Qed.
End TotalBlackoutDueToOverheadsBounded.