Library prosa.analysis.facts.preemption.task.floating

Platform for Floating Non-Preemptive Regions Model

In this section, we prove that instantiation of functions job_preemptable and task_max_nonpreemptive_segment for the model with floating non-preemptive regions indeed defines a valid preemption model with bounded non-preemptive regions.
Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{TaskCost Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.

In addition, we assume the existence of a function mapping a task to its maximal non-preemptive segment ...
.. and the existence of functions mapping a job to the sequence of its preemption points, ...
  Context `{JobPreemptionPoints Job}.
... i.e., we assume limited-preemptive jobs.
  #[local] Existing Instance limited_preemptive_job_model.

Consider any arrival sequence.
  Variable arr_seq : arrival_sequence Job.

Next, consider any preemption-aware schedule of this arrival sequence...
... where jobs do not execute before their arrival or after completion.
Next, we assume that preemption points are defined by the model with floating non-preemptive regions.
Then, we prove that the job_preemptable and task_max_nonpreemptive_segment functions define a model with bounded non-preemptive regions.
  Lemma floating_preemption_points_model_is_model_with_bounded_nonpreemptive_regions:
    model_with_bounded_nonpreemptive_segments arr_seq.
  Proof.
    intros j ARR.
    move: (H_valid_model_with_floating_nonpreemptive_regions) ⇒ LIM; move: LIM (LIM) ⇒ [LIM L] [[BEG [END NDEC]] MAX].
    case: (posnP (job_cost j)) ⇒ [ZERO|POS].
    - split.
      + rewrite /job_respects_max_nonpreemptive_segment /job_max_nonpreemptive_segment
              /lengths_of_segments /job_preemption_points; rewrite ZERO; simpl.
        by rewrite /job_preemptable /limited_preemptive_job_model; erewrite zero_in_preemption_points; eauto 2.
      + moveprogr; rewrite ZERO leqn0; move ⇒ /andP [_ /eqP LE].
         0; rewrite LE; split; first by apply/andP; split.
          by eapply zero_in_preemption_points; eauto 2.
    - split; last (moveprogr /andP [_ LE]; destruct (progr \in job_preemptive_points j) eqn:NotIN).
      + by apply MAX.
      + by progr; split; first apply/andP; first split; rewrite ?leq_addr // conversion_preserves_equivalence.
      + move: NotIN ⇒ /eqP; rewrite eqbF_neg; moveNotIN.
        edestruct (work_belongs_to_some_nonpreemptive_segment arr_seq) as [x [SIZE2 N]]; eauto 2. move: N ⇒ /andP [N1 N2].
        set ptl := nth 0 (job_preemptive_points j) x.
        set ptr := nth 0 (job_preemptive_points j) x.+1.
         ptr; split; first last.
        × by unfold job_preemptable, limited_preemptive_job_model; apply mem_nth.
        × apply/andP; split; first by apply ltnW.
          apply leq_trans with (ptl + (job_max_nonpreemptive_segment j - ε) + 1); first last.
          -- rewrite addn1 ltn_add2r; apply N1.
          -- unfold job_max_nonpreemptive_segment.
             rewrite -addnA -leq_subLR -(leq_add2r 1).
             rewrite [in X in _ X]addnC -leq_subLR.
             rewrite !subn1 !addn1 prednK.
             { rewrite -[_.+1.-1]pred_Sn. rewrite /lengths_of_segments.
               erewrite job_parameters_max_np_to_job_limited; eauto.
                 by apply distance_between_neighboring_elements_le_max_distance_in_seq. }
             { rewrite /lengths_of_segments; erewrite job_parameters_max_np_to_job_limited; eauto.
               apply max_distance_in_nontrivial_seq_is_positive; first by eauto 2.
                0, (job_cost j); repeat split.
               - by eapply zero_in_preemption_points; eauto.
               - by eapply job_cost_in_nonpreemptive_points; eauto.
               - by apply/eqP; rewrite eq_sym -lt0n; apply POS.
             }
  Qed.

Which together with lemma valid_fixed_preemption_points_model gives us the fact that functions job_preemptable and task_max_nonpreemptive_segment define a valid preemption model with bounded non-preemptive regions.
We add the above lemma into a "Hint Database" basic_rt_facts, so Coq will be able to apply them automatically.
Global Hint Resolve
     valid_fixed_preemption_points_model_lemma
     floating_preemption_points_model_is_model_with_bounded_nonpreemptive_regions
     floating_preemption_points_model_is_valid_model_with_bounded_nonpreemptive_regions : basic_rt_facts.