Library prosa.implementation.refinements.EDF.fast_search_space
Require Export prosa.results.edf.rta.bounded_nps.
Require Export prosa.implementation.refinements.fast_search_space_computation.
Require Export prosa.implementation.refinements.fast_search_space_computation.
First, we define the concept of higher-or-equal-priority workload.
Definition bound_on_total_hep_workload (ts : seq Task) (tsk : Task) A Δ :=
\sum_(tsk_o <- ts | tsk_o != tsk)
task_rbf tsk_o (minn ((A + ε) + task_deadline tsk - task_deadline tsk_o) Δ).
\sum_(tsk_o <- ts | tsk_o != tsk)
task_rbf tsk_o (minn ((A + ε) + task_deadline tsk - task_deadline tsk_o) Δ).
Next, we provide a function that checks a single point P=(A,F) of the search space when
adopting a fully-preemptive policy.
Definition check_point_FP (ts : seq Task) (tsk : Task) (R : nat) (P : nat × nat) :=
(task_rbf tsk (P.1 + ε) + bound_on_total_hep_workload ts tsk P.1 (P.1 + P.2) ≤ P.1 + P.2)
&& (P.2 ≤ R).
(task_rbf tsk (P.1 + ε) + bound_on_total_hep_workload ts tsk P.1 (P.1 + P.2) ≤ P.1 + P.2)
&& (P.2 ≤ R).
Further, we provide a way to compute the blocking bound when using nonpreemptive policies.
Definition blocking_bound_NP (ts : seq Task) (tsk : Task) (A : nat) :=
\max_(tsk_o <- [seq i | i <- ts] | blocking_relevant tsk_o &&
(task_deadline tsk + A <
task_deadline tsk_o)) (task_cost tsk_o - ε).
\max_(tsk_o <- [seq i | i <- ts] | blocking_relevant tsk_o &&
(task_deadline tsk + A <
task_deadline tsk_o)) (task_cost tsk_o - ε).
Finally, we provide a function that checks a single point P=(A,F) of the search space when
adopting a fully-nonpreemptive policy.
Definition check_point_NP (ts : seq Task) (tsk : Task) (R : nat) (P : nat × nat) :=
(blocking_bound_NP ts tsk P.1
+ (task_rbf tsk (P.1 + ε) - (task_cost tsk - ε))
+ bound_on_total_hep_workload ts tsk P.1 (P.1 + P.2) ≤ P.1 + P.2)
&& (P.2 + (task_cost tsk - ε) ≤ R).
(blocking_bound_NP ts tsk P.1
+ (task_rbf tsk (P.1 + ε) - (task_cost tsk - ε))
+ bound_on_total_hep_workload ts tsk P.1 (P.1 + P.2) ≤ P.1 + P.2)
&& (P.2 + (task_cost tsk - ε) ≤ R).
Assume that an arrival curve based on a concrete prefix is given.
#[local] Existing Instance ConcreteMaxArrivals.
Definition Task := concrete_task : eqType.
Definition Job := concrete_job : eqType.
Context (TMNSP: TaskMaxNonpreemptiveSegment Task).
Definition Task := concrete_task : eqType.
Definition Job := concrete_job : eqType.
Context (TMNSP: TaskMaxNonpreemptiveSegment Task).
First, we recall the notion of correct search space as defined by
abstract RTA.
Definition correct_search_space ts (tsk:Task) L :=
[seq A <- iota 0 L | is_in_search_space ts tsk L A].
[seq A <- iota 0 L | is_in_search_space ts tsk L A].
Next, we provide a computation-oriented way to compute abstract RTA's search space for
fixed-priority schedules, as we will prove that earliest-deadline-first is equivalent.
We start with a function that computes the search space in a generic
interval
[l,r)
, ...
Definition search_space_emax_FP_h (tsk : Task) l r :=
let h := get_horizon_of_task tsk in
let offsets := map (muln h) (iota l r) in
let emax_offsets := repeat_steps_with_offset tsk offsets in
map predn emax_offsets.
let h := get_horizon_of_task tsk in
let offsets := map (muln h) (iota l r) in
let emax_offsets := repeat_steps_with_offset tsk offsets in
map predn emax_offsets.
... which we then apply to the interval
[0, (L %/h).+1)
.
Definition search_space_emax_FP L (tsk : Task) :=
let h := get_horizon_of_task tsk in
search_space_emax_FP_h (tsk : Task) 0 (L %/h).+1.
let h := get_horizon_of_task tsk in
search_space_emax_FP_h (tsk : Task) 0 (L %/h).+1.
Analogously, we define the search space for a task scheduled under earliest-deadline-first
in a generic interval
[l,r)
, ...
Definition task_search_space_emax_EDF_h (tsk tsko : Task) (l r : nat) :=
let h := get_horizon_of_task tsko in
let offsets := map (muln h) (iota l r) in
let emax_offsets := repeat_steps_with_offset tsko offsets in
let emax_edf_offsets := shift_points_neg (shift_points_pos emax_offsets (task_deadline tsko))
(task_deadline tsk) in
map predn emax_edf_offsets.
let h := get_horizon_of_task tsko in
let offsets := map (muln h) (iota l r) in
let emax_offsets := repeat_steps_with_offset tsko offsets in
let emax_edf_offsets := shift_points_neg (shift_points_pos emax_offsets (task_deadline tsko))
(task_deadline tsk) in
map predn emax_edf_offsets.
...which we then apply to the interval
[0, (L %/h).+1)
.
Definition task_search_space_emax_EDF (tsk tsko : Task) (L : nat) :=
let h := get_horizon_of_task tsko in
task_search_space_emax_EDF_h tsk tsko
0 ((L + (task_deadline tsk - task_deadline tsko)) %/ h).+1.
let h := get_horizon_of_task tsko in
task_search_space_emax_EDF_h tsk tsko
0 ((L + (task_deadline tsk - task_deadline tsko)) %/ h).+1.
Finally, we define the overall search space as the concatenation of per-task search
spaces.
Definition search_space_emax_EDF ts (tsk : Task) (L : nat) :=
\cat_(tsko <- ts) task_search_space_emax_EDF tsk tsko L.
End SearchSpaceDefinition.
\cat_(tsko <- ts) task_search_space_emax_EDF tsk tsko L.
End SearchSpaceDefinition.
Consider a given maximum busy-interval length L, ...
... a task set ts with valid arrivals, positive task costs, and arrival curves
with positive steps, ...
Variable ts : seq Task.
Hypothesis H_valid_task_set : task_set_with_valid_arrivals ts.
Hypothesis H_all_tsk_positive_cost : ∀ tsk, tsk \in ts → 0 < task_cost tsk.
Hypothesis H_all_tsk_positive_step :
∀ tsk, tsk \in ts → fst (head (0,0) (steps_of (get_arrival_curve_prefix tsk))) > 0.
Hypothesis H_valid_task_set : task_set_with_valid_arrivals ts.
Hypothesis H_all_tsk_positive_cost : ∀ tsk, tsk \in ts → 0 < task_cost tsk.
Hypothesis H_all_tsk_positive_step :
∀ tsk, tsk \in ts → fst (head (0,0) (steps_of (get_arrival_curve_prefix tsk))) > 0.
... and a task belonging to ts.
First, we show that the earliest-deadline-first search space is a generalization of
the fixed-priority search space.
Lemma EDF_ss_generalize_FP_ss :
task_search_space_emax_EDF_h
tsk tsk 0 ((L + (task_deadline tsk - task_deadline tsk)) %/ get_horizon_of_task tsk).+1
= search_space_emax_FP L tsk.
Proof.
rewrite /task_search_space_emax_EDF_h /search_space_emax_FP /search_space_emax_FP_h.
rewrite subnn addn0.
set (S := repeat_steps_with_offset _ _) in ×.
replace (shift_points_neg _ _) with S; first by done.
symmetry; unfold shift_points_neg, shift_points_pos.
elim: S ⇒ [//|a S IHS].
rewrite //= leq_addr //= IHS.
by replace ( _ + _ - _) with a; last lia.
Qed.
task_search_space_emax_EDF_h
tsk tsk 0 ((L + (task_deadline tsk - task_deadline tsk)) %/ get_horizon_of_task tsk).+1
= search_space_emax_FP L tsk.
Proof.
rewrite /task_search_space_emax_EDF_h /search_space_emax_FP /search_space_emax_FP_h.
rewrite subnn addn0.
set (S := repeat_steps_with_offset _ _) in ×.
replace (shift_points_neg _ _) with S; first by done.
symmetry; unfold shift_points_neg, shift_points_pos.
elim: S ⇒ [//|a S IHS].
rewrite //= leq_addr //= IHS.
by replace ( _ + _ - _) with a; last lia.
Qed.
Finally, we show that the abstract RTA's standard search space is a subset of the
computation-oriented version defined above.
Lemma search_space_subset_EDF :
∀ A, A \in correct_search_space ts tsk L → A \in search_space_emax_EDF ts tsk L.
Proof.
move⇒ A; unfold correct_search_space, is_in_search_space.
rewrite mem_filter ⇒ /andP [/andP [LT /orP [CH|CH]] IN]; unfold search_space_emax_EDF.
{ move: (H_tsk_in_ts) ⇒ INTS.
apply in_cat in INTS; destruct INTS as [ts_l [ts_r EQ]].
rewrite EQ; rewrite big_cat big_cons //= !mem_cat; apply/orP; right; apply/orP; left.
unfold task_search_space_emax_EDF; rewrite EDF_ss_generalize_FP_ss.
by eapply task_search_space_subset; eauto. }
{ move: CH ⇒ /hasP [tsko INts /andP [NEQtsk NEQ]].
apply in_cat in INts; destruct INts as [ts_l [ts_r EQ]]; subst.
have INts:tsko \in ts_l++[::tsko]++ts_r by rewrite !mem_cat mem_seq1; apply/orP;right;apply/orP;left.
rewrite big_cat big_cons //= !mem_cat; apply/orP; right; apply/orP; left; apply/mapP.
∃ A.+1; last by lia.
apply /mapP; ∃ (A.+1 + task_deadline tsk); last by rewrite -addnBA // subnn addn0.
rewrite mem_filter; apply/andP; split; first by lia.
have AD : task_deadline tsko ≤ A + task_deadline tsk.
{ move_neq_up CONTR.
have Z1 : A + task_deadline tsk - task_deadline tsko = 0 by lia.
have Z2 : A + 1 + task_deadline tsk - task_deadline tsko = 0 by lia.
by rewrite Z1 Z2 eq_refl in NEQ. }
apply /mapP; ∃ (A.+1 + task_deadline tsk - task_deadline tsko); last by rewrite subnKC; lia.
set rto := repeat_steps_with_offset; set ght := get_horizon_of_task.
have IN_RTO : ∀ B L', (B \in search_space_emax_FP L' tsko) →
B.+1 \in rto tsko [seq ght tsko × i | i <- iota 0 (L' %/ ght tsko).+1].
{ move ⇒ B L' /mapP [C INC EQC].
have POS : C > 0 by eapply nonshifted_offsets_are_positive; eauto 2.
by rewrite EQC prednK. }
destruct (leqP (task_deadline tsko) (task_deadline tsk)) as [EE|EE].
{ rewrite -addnBA //; rewrite -!addnBA // -addnA[1+_] addnC addnA in NEQ.
rewrite -addn1 -addnA [1 + _ ]addnC addnA addn1.
set (B := A + (task_deadline tsk - task_deadline tsko)) in ×.
have CH : task_rbf_changes_at tsko B; [ done | clear NEQ ].
have LTB : B < L + (task_deadline tsk - task_deadline tsko) by unfold B; lia.
by apply IN_RTO; last by eapply task_search_space_subset; eauto. }
{ apply ltnW in EE.
rewrite -subnBA//-subnBA//-addnBAC in NEQ; last by rewrite /concept.task_deadline /TaskDeadline; lia.
rewrite -subnBA // -addn1 -addnBAC //; last by lia.
set (B := A - (task_deadline tsko - task_deadline tsk)) in ×.
have CH : task_rbf_changes_at tsko B; [ done | clear NEQ ].
replace (task_deadline tsk - task_deadline tsko) with 0; [rewrite addn0 addn1 |lia].
by apply IN_RTO; last eapply task_search_space_subset; eauto 2; unfold B; lia. } }
Qed.
End FastSearchSpaceComputationSubset.
∀ A, A \in correct_search_space ts tsk L → A \in search_space_emax_EDF ts tsk L.
Proof.
move⇒ A; unfold correct_search_space, is_in_search_space.
rewrite mem_filter ⇒ /andP [/andP [LT /orP [CH|CH]] IN]; unfold search_space_emax_EDF.
{ move: (H_tsk_in_ts) ⇒ INTS.
apply in_cat in INTS; destruct INTS as [ts_l [ts_r EQ]].
rewrite EQ; rewrite big_cat big_cons //= !mem_cat; apply/orP; right; apply/orP; left.
unfold task_search_space_emax_EDF; rewrite EDF_ss_generalize_FP_ss.
by eapply task_search_space_subset; eauto. }
{ move: CH ⇒ /hasP [tsko INts /andP [NEQtsk NEQ]].
apply in_cat in INts; destruct INts as [ts_l [ts_r EQ]]; subst.
have INts:tsko \in ts_l++[::tsko]++ts_r by rewrite !mem_cat mem_seq1; apply/orP;right;apply/orP;left.
rewrite big_cat big_cons //= !mem_cat; apply/orP; right; apply/orP; left; apply/mapP.
∃ A.+1; last by lia.
apply /mapP; ∃ (A.+1 + task_deadline tsk); last by rewrite -addnBA // subnn addn0.
rewrite mem_filter; apply/andP; split; first by lia.
have AD : task_deadline tsko ≤ A + task_deadline tsk.
{ move_neq_up CONTR.
have Z1 : A + task_deadline tsk - task_deadline tsko = 0 by lia.
have Z2 : A + 1 + task_deadline tsk - task_deadline tsko = 0 by lia.
by rewrite Z1 Z2 eq_refl in NEQ. }
apply /mapP; ∃ (A.+1 + task_deadline tsk - task_deadline tsko); last by rewrite subnKC; lia.
set rto := repeat_steps_with_offset; set ght := get_horizon_of_task.
have IN_RTO : ∀ B L', (B \in search_space_emax_FP L' tsko) →
B.+1 \in rto tsko [seq ght tsko × i | i <- iota 0 (L' %/ ght tsko).+1].
{ move ⇒ B L' /mapP [C INC EQC].
have POS : C > 0 by eapply nonshifted_offsets_are_positive; eauto 2.
by rewrite EQC prednK. }
destruct (leqP (task_deadline tsko) (task_deadline tsk)) as [EE|EE].
{ rewrite -addnBA //; rewrite -!addnBA // -addnA[1+_] addnC addnA in NEQ.
rewrite -addn1 -addnA [1 + _ ]addnC addnA addn1.
set (B := A + (task_deadline tsk - task_deadline tsko)) in ×.
have CH : task_rbf_changes_at tsko B; [ done | clear NEQ ].
have LTB : B < L + (task_deadline tsk - task_deadline tsko) by unfold B; lia.
by apply IN_RTO; last by eapply task_search_space_subset; eauto. }
{ apply ltnW in EE.
rewrite -subnBA//-subnBA//-addnBAC in NEQ; last by rewrite /concept.task_deadline /TaskDeadline; lia.
rewrite -subnBA // -addn1 -addnBAC //; last by lia.
set (B := A - (task_deadline tsko - task_deadline tsk)) in ×.
have CH : task_rbf_changes_at tsko B; [ done | clear NEQ ].
replace (task_deadline tsk - task_deadline tsko) with 0; [rewrite addn0 addn1 |lia].
by apply IN_RTO; last eapply task_search_space_subset; eauto 2; unfold B; lia. } }
Qed.
End FastSearchSpaceComputationSubset.