Library prosa.implementation.refinements.arrival_curve

Arrival Curve Refinements.

In this module, we provide a series of definitions related to arrival curves when working with generic tasks.
First, we define a helper function that yields the horizon of the arrival curve prefix of a task ...
... another one that yields the time steps of the arrival curve, ...
... a function that yields the same time steps, offset by δ, ...
... and a generalization of the previous function that repeats the time steps for each given offset.
For convenience, we provide a short form to indicate the request-bound function of a task.
Further, we define a valid arrival bound as (1) a positive minimum inter-arrival time/period, or (2) a valid arrival curve prefix.
Definition valid_arrivals (tsk : Task) : bool :=
  match task_arrival tsk with
  | Periodic pp 1
  | Sporadic mm 1
  | ArrivalPrefix emax_vecvalid_arrival_curve_prefix_dec emax_vec
  end.

Next, we define some helper functions, that indicate whether the given task is periodic, ...
Definition is_periodic_arrivals (tsk : Task) : Prop :=
   p, task_arrival tsk = Periodic p.

... sporadic, ...
Definition is_sporadic_arrivals (tsk : Task) : Prop :=
   m, task_arrival tsk = Sporadic m.

... or bounded by an arrival curve.
Further, for convenience, we define the notion of task having a valid arrival curve.
Finally, we define define the notion of task set with valid arrivals.
Definition task_set_with_valid_arrivals (ts : seq Task) :=
   tsk,
    tsk \in ts valid_arrivals tsk.

In this section, we prove some facts regarding the above definitions.
Section Facts.

Consider a task tsk.
  Variable tsk : Task.

We show that a task is either periodic, sporadic, or bounded by an arrival-curve prefix.
  Lemma arrival_cases :
    is_periodic_arrivals tsk
     is_sporadic_arrivals tsk
     is_etamax_arrivals tsk.
  Proof.
    rewrite /is_periodic_arrivals /is_sporadic_arrivals /is_etamax_arrivals.
    destruct (task_arrival tsk).
    - by left; eexists; reflexivity.
    - by right; left; eexists; reflexivity.
    - by right; right; eexists; reflexivity.
  Qed.

End Facts.

In this fairly technical section, we prove a series of refinements aimed to be able to convert between a standard natural-number task arrival bound and an arrival bound that uses, instead of numbers, a generic type T.
Section Theory.

First, we prove a refinement for positive_horizon.
  Local Instance refine_positive_horizon :
    refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
            positive_horizon positive_horizon_T.
  Proof.
    unfold positive_horizon, positive_horizon_T.
    apply: refines_abstra b X.
    unfold horizon_of, horizon_of_T.
    destruct a as [h s], b as [h' s']; simpl.
    rewrite refinesE; rewrite refinesE in X; inversion_clear X.
    by apply refine_ltn; auto using Rnat_0.
  Qed.

Next, we prove a refinement for large_horizon.
  Local Instance refine_large_horizon :
    refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
            large_horizon_dec large_horizon_T.
  Proof.
    unfold large_horizon_dec, large_horizon_T.
    apply refines_abstr; intros ac ac' Rac.
    refines_apply.
    apply refines_abstr; intros a a' Ra.
    by refines_apply.
  Qed.

Next, we prove a refinement for no_inf_arrivals.
  Local Instance refine_no_inf_arrivals :
    refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
            no_inf_arrivals no_inf_arrivals_T.
  Proof.
    unfold no_inf_arrivals, no_inf_arrivals_T.
    apply refines_abstr; intros ac ac' Rac.
    refines_apply.
  Qed.

Next, we prove a refinement for specified_bursts.
  Local Instance refine_specified_bursts :
    refines (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
            specified_bursts specified_bursts_T.
  Proof.
    unfold specified_bursts, specified_bursts_T.
    apply refines_abstr; intros ac ac' Rac.
    rewrite -has_pred1.
    refines_apply; last first.
    - by refines_abstr; rewrite pred1E eq_sym ; refines_apply.
    - refines_abstr.
      rewrite refinesE; eapply has_R; last by apply refinesP; eassumption.
      by intros; apply refinesP; refines_apply.
  Qed.

Next, we prove a refinement for the arrival curve prefix validity.
  Local Instance refine_valid_arrival_curve_prefix :
    refines
      (prod_R Rnat (list_R (prod_R Rnat Rnat)) ==> bool_R)%rel
      valid_arrival_curve_prefix_dec
      valid_extrapolated_arrival_curve_T.
  Proof.
    apply refines_abstr.
    unfold valid_arrival_curve_prefix_dec, valid_extrapolated_arrival_curve_T.
    by intros; refines_apply.
  Qed.

Next, we prove a refinement for the arrival curve validity.
  Global Instance refine_valid_arrivals :
     tsk,
      refines (bool_R)%rel
              (valid_arrivals (taskT_to_task tsk))
              (valid_arrivals_T tsk) | 0.
  Proof.
    movetsk.
    have Rtsk := refine_task'.
    rewrite refinesE in Rtsk.
    specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
    have Rab := refine_task_arrival.
    rewrite refinesE in Rab.
    specialize (Rab _ _ Rtsk).
    all: unfold valid_arrivals, valid_arrivals_T.
    destruct (task_arrival (_ _)) as [?|?|arrival_curve_prefix], (task_arrival_T _) as [?|?|arrival_curve_prefixT].
    all: try (inversion Rab; fail).
    all: try (refines_apply; rewrite refinesE; inversion Rab; subst; by done).
    { unfold ArrivalCurvePrefix in ×.
      refines_apply.
      destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
      inversion Rab as [(H0, H1)]; refines_apply.
      rewrite refinesE.
      move: H1; clear; elim: st st' ⇒ [|s st IHst] [|s' st'] //.
      - by move_; apply: list_R_nil_R.
      - moveH1; inversion H1 as [(H0, H2)].
        apply: list_R_cons_R; last by apply IHst.
        destruct s', s; unfold tb2tn, tmap; simpl.
        by apply refinesP; refines_apply. }
  Qed.

Next, we prove a refinement for repeat_steps_with_offset.
  Global Instance refine_repeat_steps_with_offset :
    refines (Rtask ==> list_R Rnat ==> list_R Rnat)%rel
            repeat_steps_with_offset repeat_steps_with_offset_T.
  Proof.
    rewrite refinesEtsk tsk' Rtsk os os' Ros.
    apply flatten_R; eapply map_R; last by apply Ros.
    intros o o' Ro.
    eapply map_R.
    { by intros a a' Ra; apply refinesP; refines_apply. }
    { unfold get_time_steps_of_task, get_time_steps_of_task_T.
      have Rab := refine_task_arrival.
      rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
      rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
      destruct (task_arrival tsk) as [?|?|arrival_curve_prefix], (task_arrival_T tsk') as [?|?|arrival_curve_prefixT].
      all: try (inversion Rab; fail).
      all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
      { apply refinesP; refines_apply.
        by rewrite refinesE; inversion Rab; subst. }
      { apply refinesP; refines_apply.
        by rewrite refinesE; inversion Rab; subst. }
      { apply refinesP; refines_apply.
        destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
        inversion Rab as [(H0, H1)]; refines_apply.
        move: H1; clear; move: st'.
        rewrite refinesE; elim: st ⇒ [|a st IHst] [ |s st'] //.
        - by intros _; rewrite //=; apply list_R_nil_R.
        - intros H1; inversion H1; rewrite //=.
          apply list_R_cons_R; last by apply IHst.
          destruct s, a; unfold tb2tn, tmap; simpl.
          by apply refinesP; refines_apply. } }
  Qed.

Next, we prove a refinement for get_horizon_of_task.
  Global Instance refine_get_horizon_of_task :
    refines (Rtask ==> Rnat)%rel get_horizon_of_task get_horizon_of_task_T.
  Proof.
    rewrite refinesEtsk tsk' Rtsk.
    rewrite /get_horizon_of_task /get_horizon_of_task_T.
    have Rab := refine_task_arrival.
    rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
    rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
    destruct (task_arrival _) as [?|?|arrival_curve_prefix], (task_arrival_T _) as [?|?|arrival_curve_prefixT].
    all: try (inversion Rab; fail).
    all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
    { apply refinesP; refines_apply.
      by rewrite refinesE; inversion Rab; subst. }
    { apply refinesP; refines_apply.
      by rewrite refinesE; inversion Rab; subst. }
    { destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
      rewrite /horizon_of /horizon_of_T //=.
      by inversion Rab; apply refinesP; tc. }
  Qed.

Next, we prove a refinement for the extrapolated arrival curve.
  Local Instance refine_extrapolated_arrival_curve :
     arrival_curve_prefix arrival_curve_prefixT δ δ',
      refines Rnat δ δ'
      Rtask_ab (ArrivalPrefix arrival_curve_prefix) (ArrivalPrefix_T arrival_curve_prefixT)
      refines Rnat (extrapolated_arrival_curve arrival_curve_prefix δ) (extrapolated_arrival_curve_T arrival_curve_prefixT δ').
  Proof.
    movearrival_curve_prefix arrival_curve_prefixT δ δ' Rab.
    refines_apply.
    destruct arrival_curve_prefix as [h st], arrival_curve_prefixT as [h' st'].
    inversion Rab as [(H0, H1)]; refines_apply.
    move: H1; clear; move: st'.
    rewrite refinesE; elim: st ⇒ [|a st IHst] [ |s st'] //.
    - by intros _; rewrite //=; apply list_R_nil_R.
    - intros H1; inversion H1; rewrite //=.
      apply list_R_cons_R; last by apply IHst.
      destruct s, a; unfold tb2tn, tmap; simpl.
      by apply refinesP; refines_apply.
  Qed.

Next, we prove a refinement for the arrival bound definition.
  Local Instance refine_ConcreteMaxArrivals :
    refines ( Rtask ==> Rnat ==> Rnat )%rel ConcreteMaxArrivals ConcreteMaxArrivals_T.
  Proof.
    apply refines_abstr2.
    rewrite /ConcreteMaxArrivals /concrete_max_arrivals /ConcreteMaxArrivals_T.
    movetsk tsk' Rtsk δ δ' .
    have Rab := refine_task_arrival.
    rewrite refinesE in Rab; rewrite refinesE in Rtsk.
    specialize (Rab _ _ Rtsk).
    rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
    destruct (task_arrival tsk) as [?|?|arrival_curve_prefix], (task_arrival_T tsk') as [?|?|arrival_curve_prefixT].
    all: try (inversion Rab; fail).
    all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
    { by refines_apply; rewrite refinesE; inversion Rab; subst. }
    { by refines_apply; rewrite refinesE; inversion Rab; subst. }
    { by apply refine_extrapolated_arrival_curve. }
  Qed.

Next, we prove a refinement for the arrival bound definition applied to the task conversion function.
  Global Instance refine_ConcreteMaxArrivals' :
     tsk,
      refines (Rnat ==> Rnat)%rel (ConcreteMaxArrivals (taskT_to_task tsk))
              (ConcreteMaxArrivals_T tsk) | 0.
  Proof.
    intros tsk; apply refines_abstr.
    rewrite /ConcreteMaxArrivals /concrete_max_arrivals
            /ConcreteMaxArrivals_Tδ δ' .
    have Rtsk := refine_task'.
    rewrite refinesE in Rtsk.
    specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
    have Rab := refine_task_arrival.
    rewrite refinesE in Rab.
    specialize (Rab _ _ Rtsk).
    rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
    destruct (task_arrival (_ _)) as [?|?|arrival_curve_prefix], (task_arrival_T tsk) as [?|?|arrival_curve_prefixT].
    all: try (inversion Rab; fail).
    all: unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
    { by refines_apply; rewrite refinesE; inversion Rab; subst. }
    { by refines_apply; rewrite refinesE; inversion Rab; subst. }
    { by apply refine_extrapolated_arrival_curve. }
  Qed.

Next, we prove a refinement for get_arrival_curve_prefix.
  Global Instance refine_get_arrival_curve_prefix :
    refines (Rtask ==> prod_R Rnat (list_R (prod_R Rnat Rnat)))%rel
            get_arrival_curve_prefix get_extrapolated_arrival_curve_T.
  Proof.
    rewrite refinesEtsk tsk' Rtsk.
    have Rab := refine_task_arrival.
    rewrite refinesE in Rab; specialize (Rab _ _ Rtsk).
    rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
    unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
    destruct (task_arrival _) as [?|?|e], (task_arrival_T _) as [?|?|eT].
    all: try (inversion Rab; fail).
    all: try (inversion Rab; subst; apply refinesP; refines_apply; fail).
    destruct e as [h?], eT as [? st];[apply refinesP; refines_apply; inversion Rab; tc].
    inversion Rab as [(H__, Hst)]; subst.
    elim: st Rab Hst ⇒ [|a st IHst] Rab H1; first by rewrite //= refinesE; apply list_R_nil_R.
    destruct a; rewrite refinesE.
    apply list_R_cons_R; first by apply refinesP; unfold tb2tn,tmap; refines_apply.
    by apply refinesP, IHst.
  Qed.

Next, we prove a refinement for get_arrival_curve_prefix applied to lists.
  Global Instance refine_get_arrival_curve_prefix' :
     tsk,
      refines
        (prod_R Rnat (list_R (prod_R Rnat Rnat)))%rel
        (get_arrival_curve_prefix (taskT_to_task tsk))
        (get_extrapolated_arrival_curve_T tsk) | 0.
  Proof.
    intros tsk.
    have Rtsk := refine_task'.
    rewrite refinesE in Rtsk.
    specialize (Rtsk tsk tsk (unifyxx _)); simpl in Rtsk.
    move: (refine_task_arrival) ⇒ Rab.
    rewrite refinesE in Rab.
    specialize (Rab _ _ Rtsk).
    rewrite /get_arrival_curve_prefix /get_extrapolated_arrival_curve_T.
    unfold inter_arrival_to_prefix, inter_arrival_to_extrapolated_arrival_curve_T.
    destruct (task_arrival _) as [?|?|e], (task_arrival_T _) as [?|?|eT].
    all: try (inversion Rab; fail).
    all: try (inversion Rab; subst; refines_apply; fail).
    destruct e as [h?], eT as [? st]; refines_apply; first by inversion Rab; subst; tc.
    inversion Rab; subst.
    elim: st Rab ⇒ [|a st IHst] Rab; first by rewrite //= refinesE; apply list_R_nil_R.
    destruct a; rewrite //= refinesE.
    apply list_R_cons_R; first by apply refinesP; unfold tb2tn,tmap; refines_apply.
    by apply refinesP, IHst.
  Qed.

Next, we prove a refinement for sorted when applied to leq_steps.
  Global Instance refine_sorted_leq_steps :
     tsk,
      refines (bool_R)%rel
              (sorted leq_steps (steps_of (get_arrival_curve_prefix (taskT_to_task tsk))))
              (sorted leq_steps_T (get_extrapolated_arrival_curve_T tsk).2) | 0.
  Proof.
    intros.
    by apply refine_leq_steps_sorted; refines_apply.
  Qed.

Lastly, we prove a refinement for the task request-bound function.
  Global Instance refine_task_rbf :
    refines ( Rtask ==> Rnat ==> Rnat )%rel task_rbf task_rbf_T.
  Proof.
    apply refines_abstr2.
    rewrite /task_rbf /task_rbf_T /task_request_bound_function
            /concept.task_cost /TaskCost
            /max_arrivals /MaxArrivalst t' Rt y y' Ry.
    by refines_apply.
  Qed.

End Theory.