Library prosa.results.prm.fifo.bounded_nps
Require Import prosa.analysis.facts.readiness.basic.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.preemption.rtc_threshold.limited.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.jlfp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fifo.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fifo_fixpoint.
Require Export prosa.analysis.facts.priority.fifo.
Require Export prosa.analysis.facts.priority.fifo_ahep_bound.
Require Export prosa.analysis.facts.model.sbf.periodic.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.preemption.rtc_threshold.limited.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.jlfp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fifo.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fifo_fixpoint.
Require Export prosa.analysis.facts.priority.fifo.
Require Export prosa.analysis.facts.priority.fifo_ahep_bound.
Require Export prosa.analysis.facts.model.sbf.periodic.
RTA for FIFO Scheduling on Uniprocessors under the Periodic Resource Model
Defining the System Model
- tasks, jobs, and their parameters,
- the task set and the task under analysis,
- the processor model,
- the sequence of job arrivals,
- the absence of self-suspensions,
- an arbitrary schedule of the task set, and finally,
- the resource-supply model.
Tasks and Jobs
Context {Task : TaskType} `{TaskCost Task} `{MaxArrivals Task}
`{TaskRunToCompletionThreshold Task}.
`{TaskRunToCompletionThreshold Task}.
... and their associated jobs, where each job has a corresponding task
job_task, an execution time job_cost, an arrival time job_arrival,
and a list of preemption points job_preemptable.
Context `{PState : ProcessorState Job}.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
The Job Arrival Sequence
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
We assume that tsk is described by a valid task run-to-completion
threshold. That is, there exists a task parameter task_rtct such that
task_rtct tsk is
Hypothesis H_valid_run_to_completion_threshold :
valid_task_run_to_completion_threshold arr_seq tsk.
valid_task_run_to_completion_threshold arr_seq tsk.
Absence of Self-Suspensions
The Schedule
Variable sched : schedule PState.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
We assume that the schedule complies with some valid preemption model.
Under FIFO scheduling, the specific choice of preemption model does not
matter, since the resulting schedule behaves as if it were non-preemptive:
jobs are executed in arrival order without preemption.
We assume that the schedule respects the FIFO scheduling policy.
Periodic Resource Model
[Π⋅k, Π⋅(k+1)), the processor
provides at least γ units of supply. Furthermore, let prm_sbf Π γ
denote the corresponding SBF defined in the paper, which, as proven in the
same paper and verified in prosa.analysis.facts.model.sbf.periodic, is a
valid SBF.
Maximum Length of a Busy Interval
Definition busy_window_recurrence_solution (L : duration) :=
L > 0
∧ prm_sbf Π γ L ≥ total_request_bound_function ts L.
L > 0
∧ prm_sbf Π γ L ≥ total_request_bound_function ts L.
Response-Time Bound
Definition rta_recurrence_solution L R :=
∀ (A : duration),
is_in_search_space ts L A →
∃ (F : duration),
prm_sbf Π γ F ≥ total_request_bound_function ts (A + ε)
∧ A + R ≥ F.
∀ (A : duration),
is_in_search_space ts L A →
∃ (F : duration),
prm_sbf Π γ F ≥ total_request_bound_function ts (A + ε)
∧ A + R ≥ F.
Finally, using the abstract restricted-supply analysis, we establish that
any R that satisfies the stated equation is a sound response-time bound
for FIFO scheduling on a unit-speed uniprocessor under the periodic
resource model.
Theorem uniprocessor_response_time_bound_fifo :
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
End RTAforFIFOModelwithArrivalCurves.
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
End RTAforFIFOModelwithArrivalCurves.