Library rt.implementation.uni.basic.schedule_tdma
Require Import rt.util.all rt.util.find_seq
Arith.
Require Import rt.model.arrival.basic.job
rt.model.arrival.basic.arrival_sequence
rt.model.schedule.uni.basic.platform_tdma
rt.model.arrival.basic.task rt.model.policy_tdma.
Require Import rt.model.schedule.uni.schedule rt.model.schedule.uni.schedulability.
Require Import rt.model.priority
rt.analysis.uni.basic.tdma_rta_theory
rt.model.schedule.uni.transformation.construction.
Require Import rt.implementation.job rt.implementation.task
rt.implementation.arrival_sequence
rt.implementation.uni.basic.schedule.
Module ConcreteSchedulerTDMA.
Import Job ArrivalSequence UniprocessorSchedule SporadicTaskset Schedulability Priority
ResponseTimeAnalysisTDMA PolicyTDMA ScheduleConstruction Platform_TDMA.
Import ConcreteJob ConcreteTask ConcreteArrivalSequence ConcreteScheduler BigOp.
Section ImplementationTDMA.
Context {Task: eqType}.
Context {Job: eqType}.
Variable job_arrival: Job → time.
Variable job_cost: Job → time.
Variable job_task: Job → Task.
Variable arr_seq: arrival_sequence Job.
Variable ts: {set Task}.
Variable time_slot: TDMA_slot Task.
Variable slot_order: TDMA_slot_order Task.
Hypothesis H_arrival_times_are_consistent:
arrival_times_are_consistent job_arrival arr_seq.
Section JobSchedule.
Variable sched: schedule Job.
Variable t:time.
Let is_pending := pending job_arrival job_cost sched.
Definition pending_jobs:=
[seq j <- jobs_arrived_up_to arr_seq t | is_pending j t].
Let job_in_time_slot:=
fun job ⇒ Task_in_time_slot ts slot_order (job_task job) time_slot t.
Definition job_to_schedule :=
findP job_in_time_slot pending_jobs.
Section Lemmas.
Hypothesis arr_seq_is_a_set:
arrival_sequence_is_a_set arr_seq.
Lemma pending_jobs_uniq:
uniq pending_jobs.
Lemma respects_FIFO:
∀ j j', j \in pending_jobs → j' \in pending_jobs →
find (fun job ⇒ job==j') pending_jobs
< find (fun job ⇒ job==j) pending_jobs →
job_arrival j' ≤ job_arrival j.
Lemma pending_job_in_penging_list:
∀ j, arrives_in arr_seq j →
pending job_arrival job_cost sched j t →
j \in pending_jobs.
Lemma pendinglist_jobs_in_arr_seq:
∀ j, j \in pending_jobs →
arrives_in arr_seq j.
End Lemmas.
End JobSchedule.
Section SchedulerTDMA.
Let empty_schedule : schedule Job := fun t ⇒ None.
Definition scheduler_tdma:=
build_schedule_from_prefixes job_to_schedule empty_schedule.
Lemma scheduler_depends_only_on_prefix:
∀ sched1 sched2 t,
(∀ t0, t0 < t → sched1 t0 = sched2 t0) →
job_to_schedule sched1 t = job_to_schedule sched2 t.
Lemma scheduler_uses_construction_function:
∀ t, scheduler_tdma t = job_to_schedule scheduler_tdma t.
End SchedulerTDMA.
Let sched:=
scheduler_tdma.
Theorem scheduler_jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute job_arrival sched.
Theorem scheduler_completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost sched.
End ImplementationTDMA.
End ConcreteSchedulerTDMA.
Arith.
Require Import rt.model.arrival.basic.job
rt.model.arrival.basic.arrival_sequence
rt.model.schedule.uni.basic.platform_tdma
rt.model.arrival.basic.task rt.model.policy_tdma.
Require Import rt.model.schedule.uni.schedule rt.model.schedule.uni.schedulability.
Require Import rt.model.priority
rt.analysis.uni.basic.tdma_rta_theory
rt.model.schedule.uni.transformation.construction.
Require Import rt.implementation.job rt.implementation.task
rt.implementation.arrival_sequence
rt.implementation.uni.basic.schedule.
Module ConcreteSchedulerTDMA.
Import Job ArrivalSequence UniprocessorSchedule SporadicTaskset Schedulability Priority
ResponseTimeAnalysisTDMA PolicyTDMA ScheduleConstruction Platform_TDMA.
Import ConcreteJob ConcreteTask ConcreteArrivalSequence ConcreteScheduler BigOp.
Section ImplementationTDMA.
Context {Task: eqType}.
Context {Job: eqType}.
Variable job_arrival: Job → time.
Variable job_cost: Job → time.
Variable job_task: Job → Task.
Variable arr_seq: arrival_sequence Job.
Variable ts: {set Task}.
Variable time_slot: TDMA_slot Task.
Variable slot_order: TDMA_slot_order Task.
Hypothesis H_arrival_times_are_consistent:
arrival_times_are_consistent job_arrival arr_seq.
Section JobSchedule.
Variable sched: schedule Job.
Variable t:time.
Let is_pending := pending job_arrival job_cost sched.
Definition pending_jobs:=
[seq j <- jobs_arrived_up_to arr_seq t | is_pending j t].
Let job_in_time_slot:=
fun job ⇒ Task_in_time_slot ts slot_order (job_task job) time_slot t.
Definition job_to_schedule :=
findP job_in_time_slot pending_jobs.
Section Lemmas.
Hypothesis arr_seq_is_a_set:
arrival_sequence_is_a_set arr_seq.
Lemma pending_jobs_uniq:
uniq pending_jobs.
Lemma respects_FIFO:
∀ j j', j \in pending_jobs → j' \in pending_jobs →
find (fun job ⇒ job==j') pending_jobs
< find (fun job ⇒ job==j) pending_jobs →
job_arrival j' ≤ job_arrival j.
Lemma pending_job_in_penging_list:
∀ j, arrives_in arr_seq j →
pending job_arrival job_cost sched j t →
j \in pending_jobs.
Lemma pendinglist_jobs_in_arr_seq:
∀ j, j \in pending_jobs →
arrives_in arr_seq j.
End Lemmas.
End JobSchedule.
Section SchedulerTDMA.
Let empty_schedule : schedule Job := fun t ⇒ None.
Definition scheduler_tdma:=
build_schedule_from_prefixes job_to_schedule empty_schedule.
Lemma scheduler_depends_only_on_prefix:
∀ sched1 sched2 t,
(∀ t0, t0 < t → sched1 t0 = sched2 t0) →
job_to_schedule sched1 t = job_to_schedule sched2 t.
Lemma scheduler_uses_construction_function:
∀ t, scheduler_tdma t = job_to_schedule scheduler_tdma t.
End SchedulerTDMA.
Let sched:=
scheduler_tdma.
Theorem scheduler_jobs_must_arrive_to_execute:
jobs_must_arrive_to_execute job_arrival sched.
Theorem scheduler_completed_jobs_dont_execute:
completed_jobs_dont_execute job_cost sched.
End ImplementationTDMA.
End ConcreteSchedulerTDMA.