Library prosa.analysis.facts.model.rbf

Facts about Request Bound Functions (RBFs)

In this file, we prove some lemmas about request bound functions.

RBF is a Bound on Workload

First, we show that a task's RBF is indeed an upper bound on its workload.
Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{TaskCost Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.

Consider any arrival sequence with consistent, non-duplicate arrivals, ...
... any schedule corresponding to this arrival sequence, ...
... and an FP policy that indicates a higher-or-equal priority relation.
  Context `{FP_policy Task}.

Further, consider a task set ts...
  Variable ts : seq Task.

... and let tsk be any task in ts.
  Variable tsk : Task.
  Hypothesis H_tsk_in_ts : tsk \in ts.

Assume that the job costs are no larger than the task costs ...
... and that all jobs come from the task set.
Let max_arrivals be any arrival bound for task-set ts.
Next, recall the notions of total workload of jobs...
... and the workload of jobs of the same task as job j.
Finally, let us define some local names for clarity.
In this section, we prove that the workload of all jobs is no larger than the request bound function.
  Section WorkloadIsBoundedByRBF.

Consider any time t and any interval of length Δ.
    Variable t : instant.
    Variable Δ : instant.

First, we show that workload of task tsk is bounded by the number of arrivals of the task times the cost of the task.
    Lemma task_workload_le_num_of_arrivals_times_cost:
      task_workload t (t + Δ)
       task_cost tsk × number_of_task_arrivals arr_seq tsk t (t + Δ).
    Proof.
      rewrite /task_workload /workload_of_jobs/ number_of_task_arrivals
              /task_arrivals_between -big_filter -sum1_size big_distrr big_filter.
      destruct (task_arrivals_between arr_seq tsk t (t + Δ)) eqn:TASK.
      { unfold task_arrivals_between in TASK.
        by rewrite -big_filter !TASK !big_nil. }
      { rewrite //= big_filter big_seq_cond [in X in _ X]big_seq_cond.
        apply leq_sum.
        movej' /andP [IN TSKj'].
        rewrite muln1.
        move: TSKj' ⇒ /eqP TSKj'; rewrite -TSKj'.
        apply H_valid_job_cost.
        by apply in_arrivals_implies_arrived in IN. }
    Qed.

As a corollary, we prove that workload of task is no larger the than task request bound function.
    Corollary task_workload_le_task_rbf:
      task_workload t (t + Δ) rbf tsk Δ.
    Proof.
      eapply leq_trans; first by apply task_workload_le_num_of_arrivals_times_cost.
      rewrite leq_mul2l; apply/orP; right.
      rewrite -{2}[Δ](addKn t).
      by apply H_is_arrival_bound; last rewrite leq_addr.
    Qed.

Next, we prove that total workload of tasks is no larger than the total request bound function.
    Lemma total_workload_le_total_rbf:
      total_workload t (t + Δ) total_rbf Δ.
    Proof.
      set l := arrivals_between arr_seq t (t + Δ).
      apply (@leq_trans (\sum_(tsk' <- ts) (\sum_(j0 <- l | job_task j0 == tsk') job_cost j0))).
      { rewrite /total_workload.
        have EXCHANGE := exchange_big_dep predT.
        rewrite EXCHANGE //=; clear EXCHANGE.
        rewrite /workload_of_jobs -/l big_seq_cond [X in _ X]big_seq_cond.
        apply leq_sum; movej0 /andP [IN0 HP0].
        rewrite big_mkcond (big_rem (job_task j0)) /=.
        - by rewrite eq_refl; apply leq_addr.
        - by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset. }
      apply leq_sum_seq; intros tsk0 INtsk0 HP0.
      apply (@leq_trans (task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + Δ)))).
      { rewrite -sum1_size big_distrr /= big_filter -/l /workload_of_jobs muln1.
        apply leq_sum_seqj0 IN0 /eqP <-.
        apply H_valid_job_cost.
        by apply in_arrivals_implies_arrived in IN0. }
      { rewrite leq_mul2l; apply/orP; right.
        rewrite -{2}[Δ](addKn t).
        by apply H_is_arrival_bound; last rewrite leq_addr. }
    Qed.

Next, we consider any job j of tsk.
    Variable j : Job.
    Hypothesis H_job_of_tsk : job_of_task tsk j.

We prove that the sum of job cost of jobs whose corresponding task satisfies a predicate pred is bounded by the RBF of these tasks.
    Lemma sum_of_jobs_le_sum_rbf :
       (pred : pred Task),
        \sum_(j' <- arrivals_between arr_seq t (t + Δ) | pred (job_task j'))
         job_cost j'
          \sum_(tsk' <- ts| pred tsk')
           task_request_bound_function tsk' Δ.
    Proof.
      movepred.
      apply (@leq_trans (\sum_(tsk' <- filter pred ts)
                           (\sum_(j' <- arrivals_between arr_seq t (t + Δ)
                                 | job_task j' == tsk') job_cost j'))).
      - move: (H_job_of_tsk) ⇒ /eqP TSK.
        rewrite [X in _ X]big_filter.
        set P := fun xpred (job_task x).
        rewrite (exchange_big_dep P) //=; last by rewrite /P; move ⇒ ???/eqP→.
        rewrite /P /workload_of_jobs big_seq_cond [X in _ X]big_seq_cond.
        apply leq_sumj0 /andP [IN0 HP0].
        rewrite big_mkcond (big_rem (job_task j0)).
        + by rewrite HP0 andTb eq_refl; apply leq_addr.
        + by apply in_arrivals_implies_arrived in IN0; apply H_all_jobs_from_taskset.
      - rewrite big_filter.
        apply leq_sum_seqtsk0 INtsk0 HP0.
        apply (@leq_trans (task_cost tsk0 × size (task_arrivals_between arr_seq tsk0 t (t + Δ)))).
        + rewrite -sum1_size big_distrr /= big_filter /workload_of_jobs.
          rewrite muln1 /arrivals_between /arrival_sequence.arrivals_between.
          apply leq_sum_seq; movej0 IN0 /eqP EQ.
          by rewrite -EQ; apply H_valid_job_cost; apply in_arrivals_implies_arrived in IN0.
        + rewrite leq_mul2l; apply/orP; right.
          rewrite -{2}[Δ](addKn t).
          by apply H_is_arrival_bound; last by rewrite leq_addr.
    Qed.

Using lemma sum_of_jobs_le_sum_rbf, we prove that the workload of higher-or-equal priority jobs (w.r.t. task tsk) is no larger than the total request-bound function of higher-or-equal priority tasks.
    Lemma hep_workload_le_total_hep_rbf :
      workload_of_hep_jobs arr_seq j t (t + Δ) total_hep_rbf tsk Δ.
    Proof.
      rewrite /workload_of_hep_jobs /workload_of_jobs /total_hep_rbf /total_hep_request_bound_function_FP.
      rewrite /another_task_hep_job /hep_job /FP_to_JLFP.
      set (pred_task tsk_other := hep_task tsk_other tsk).
      rewrite (eq_big (fun jpred_task (job_task j)) job_cost) //;
              last by movej'; rewrite /pred_task; move: H_job_of_tsk ⇒ /eqP →.
      erewrite (eq_big pred_task); [|by done|by movetsk'; eauto].
      by apply: sum_of_jobs_le_sum_rbf.
    Qed.

  End WorkloadIsBoundedByRBF.

We next prove that the higher-or-equal-priority workload of tasks different from tsk is bounded by total_ohep_rbf.
  Lemma athep_workload_le_total_ohep_rbf :
    athep_workload_is_bounded arr_seq sched tsk (total_ohep_rbf tsk).
  Proof.
    movej t1 Δ TSK _.
    rewrite /workload_of_jobs /total_ohep_rbf /total_ohep_request_bound_function_FP.
    rewrite /another_task_hep_job /hep_job /FP_to_JLFP.
    set (pred_task tsk_other := hep_task tsk_other tsk && (tsk_other != tsk)).
    rewrite (eq_big (fun jpred_task (job_task j)) job_cost) //;
            last by movej'; rewrite /pred_task; move: TSK ⇒ /eqP →.
    erewrite (eq_big pred_task) ⇒ //.
    by eapply sum_of_jobs_le_sum_rbf ⇒ //.
  Qed.

End ProofWorkloadBound.

RBF Properties

In this section, we prove simple properties and identities of RBFs.
Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{TaskCost Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.

Consider any arrival sequence.
Let tsk be any task.
  Variable tsk : Task.

Let max_arrivals be a family of valid arrival curves, i.e., for any task tsk in ts max_arrival tsk is (1) an arrival bound of tsk, and (2) it is a monotonic function that equals 0 for the empty interval Δ = 0.
Let's define some local names for clarity.
We prove that task_rbf 0 is equal to 0.
  Lemma task_rbf_0_zero:
    task_rbf 0 = 0.
  Proof.
    rewrite /task_rbf /task_request_bound_function.
    apply/eqP; rewrite muln_eq0; apply/orP; right; apply/eqP.
    by move: H_valid_arrival_curve ⇒ [T1 T2].
  Qed.

We prove that task_rbf is monotone.
  Lemma task_rbf_monotone:
    monotone leq task_rbf.
  Proof.
    rewrite /monotone; intros ? ? LE.
    rewrite /task_rbf /task_request_bound_function leq_mul2l.
    apply/orP; right.
    by move: H_valid_arrival_curve ⇒ [_ T]; apply T.
  Qed.

In the following, we assume that tsk has a positive cost ...
  Hypothesis H_positive_cost : 0 < task_cost tsk.

... and max_arrivals tsk ε is positive.
Then we prove that task_rbf at ε is greater than or equal to the task's WCET.
  Lemma task_rbf_1_ge_task_cost:
    task_rbf ε task_cost tsk.
  Proof.
    have ALT: n, n = 0 n > 0 by clear; intros n; destruct n; [left | right].
    specialize (ALT (task_cost tsk)); destruct ALT as [Z | POS]; first by rewrite Z.
    rewrite -[task_cost tsk]muln1 /task_rbf /task_request_bound_function.
    by rewrite leq_pmul2l //=.
  Qed.

As a corollary, we prove that the task_rbf at any point A greater than 0 is no less than the task's WCET.
  Lemma task_rbf_ge_task_cost:
     A,
      A > 0
      task_rbf A task_cost tsk.
  Proof.
    case ⇒ // A GEQ.
    apply: (leq_trans task_rbf_1_ge_task_cost).
    exact: task_rbf_monotone.
  Qed.

Then, we prove that task_rbf at ε is greater than 0.
  Lemma task_rbf_epsilon_gt_0 : 0 < task_rbf ε.
  Proof.
    apply leq_trans with (task_cost tsk) ⇒ [//|].
    exact: task_rbf_1_ge_task_cost.
  Qed.

Consider a set of tasks ts containing the task tsk.
  Variable ts : seq Task.
  Hypothesis H_tsk_in_ts : tsk \in ts.

Next, we prove that cost of tsk is less than or equal to the total_request_bound_function.
  Lemma task_cost_le_sum_rbf :
     t,
      t > 0
      task_cost tsk total_request_bound_function ts t.
  Proof.
    case⇒ [//|t] GE.
    eapply leq_trans; first exact: task_rbf_1_ge_task_cost.
    rewrite /total_request_bound_function.
    erewrite big_rem; last by exact H_tsk_in_ts.
    apply leq_trans with (task_request_bound_function tsk t.+1); last by apply leq_addr.
    by apply task_rbf_monotone.
  Qed.

End RequestBoundFunctions.

Monotonicity of the Total RBF

In the following section, we note some trivial facts about the monotonicity of various total RBF variants.
Consider a set of tasks characterized by WCETs and arrival curves.
We observe that the total RBF is monotonically increasing.
  Lemma total_rbf_monotone :
    monotone leq (total_request_bound_function ts).
  Proof. by apply: sum_leq_monotsk IN; apply: task_rbf_monotone. Qed.

Furthermore, for any fixed-priority policy, ...
  Context `{FP_policy Task}.

... the total RBF of higher- or equal-priority tasks is also monotonic, ...
  Lemma total_hep_rbf_monotone :
     tsk,
      monotone leq (total_hep_request_bound_function_FP ts tsk).
  Proof.
    movetsk.
    apply: sum_leq_monotsk' IN.
    exact: task_rbf_monotone.
  Qed.

... as is the variant that excludes the reference task.
  Lemma total_ohep_rbf_monotone :
     tsk,
      monotone leq (total_ohep_request_bound_function_FP ts tsk).
  Proof.
    movetsk.
    apply: sum_leq_monotsk' IN.
    exact: task_rbf_monotone.
  Qed.

End TotalRBFMonotonic.

RBFs Equal to Zero for Duration ε

In the following section, we derive simple properties that follow in the pathological case of an RBF that yields zero for duration ε.
Consider a set of tasks characterized by WCETs and arrival curves ...
  Context {Task : TaskType} `{TaskCost Task} `{MaxArrivals Task}.
  Variable ts : seq Task.

... and any consistent arrival sequence of valid jobs of these tasks.
Suppose the arrival curves are correct.
Consider any valid schedule corresponding to this arrival sequence.
First, we observe that, if a task's RBF is zero for a duration ε, then it trivially has a response-time bound of zero.
  Lemma pathological_rbf_response_time_bound :
     tsk,
      tsk \in ts
      task_request_bound_function tsk ε = 0
      task_response_time_bound arr_seq sched tsk 0.
  Proof.
    movetsk IN ZERO j ARR TASK.
    rewrite /job_response_time_bound/completed_by.
    move: ZERO. rewrite /task_request_bound_function ⇒ /eqP.
    rewrite muln_eq0 ⇒ /orP [/eqP COST|/eqP NEVER].
    { apply: leq_trans.
      - by apply: H_valid_job_cost.
      - move: TASK. rewrite /job_of_task ⇒ /eqP →.
        by rewrite COST. }
    { exfalso.
      have: 0 < max_arrivals tsk ε
        by apply: (non_pathological_max_arrivals tsk arr_seq _ j).
      by rewrite NEVER. }
  Qed.

Second, given a fixed-priority policy with reflexive priorities, ...
  Context {FP : FP_policy Task}.
  Hypothesis H_reflexive : reflexive_task_priorities FP.

... if the total RBF of all equal- and higher-priority tasks is zero, then the reference task's response-time bound is also trivially zero.
  Lemma pathological_total_hep_rbf_response_time_bound :
     tsk,
      tsk \in ts
      total_hep_request_bound_function_FP ts tsk ε = 0
      task_response_time_bound arr_seq sched tsk 0.
  Proof.
    movetsk IN ZERO j ARR TASK.
    apply: pathological_rbf_response_time_bound; eauto.
    apply /eqP.
    move: ZERO ⇒ /eqP; rewrite sum_nat_eq0_nat ⇒ /allP; apply.
    rewrite mem_filter; apply /andP; split ⇒ //.
  Qed.

Thus we we can prove any response-time bound from such a pathological case, which is useful to eliminate this case in higher-level analyses.
  Corollary pathological_total_hep_rbf_any_bound :
     tsk,
      tsk \in ts
      total_hep_request_bound_function_FP ts tsk ε = 0
       R,
        task_response_time_bound arr_seq sched tsk R.
  Proof.
    movetsk IN ZERO R.
    move: (pathological_total_hep_rbf_response_time_bound tsk IN ZERO).
    rewrite /task_response_time_bound/job_response_time_boundCOMP j INj TASK.
    apply: completion_monotonic; last by apply: COMP.
    by lia.
  Qed.

End DegenerateTotalRBFs.

In this section, we establish results about the task-wise partitioning of total RBFs of multiple tasks.
Consider any type of tasks ...
  Context {Task : TaskType} `{TaskCost Task}.

... and any type of jobs associated with these tasks, where each task has a cost and an associated arrival curve.
  Context {Job : JobType} `{JobTask Job Task} `{JobCost Job} `{MaxArrivals Task}.

Consider an FP policy that indicates a higher-or-equal priority relation.
  Context `{FP : FP_policy Task}.

Consider a task set ts...
  Variable ts : seq Task.

...and let tsk be any task that serves as the reference point for "higher or equal priority" (usually, but not necessarily, from ts).
  Variable tsk : Task.

We establish that the bound on the total workload due to higher-or-equal-priority tasks can be partitioned task-wise. In other words, it is equal to the sum of the bound on the total workload due to higher-priority tasks and the bound on the total workload due to equal- priority tasks.
  Lemma hep_rbf_taskwise_partitioning :
     L,
      total_hep_request_bound_function_FP ts tsk L
      = total_hp_request_bound_function_FP ts tsk L
        + total_ep_request_bound_function_FP ts tsk L.
  Proof.
    moveL; apply sum_split_exhaustive_mutually_exclusive_predst.
    - by rewrite -andb_orr orNb Bool.andb_true_r.
    - rewrite !negb_and; case: (hep_task _ _) =>//=.
      by case: (hep_task _ _)=>//.
  Qed.

Now, assume that the priorities are reflexive.
If the task set does not contain duplicates, then the total higher-or-equal-priority RBF for any task can be split as the sum of the total other higher-or-equal-priority workload and the RBF of the task itself.
  Lemma split_hep_rbf :
     Δ,
      tsk \in ts
      uniq ts
      total_hep_request_bound_function_FP ts tsk Δ
      = total_ohep_request_bound_function_FP ts tsk Δ
        + task_request_bound_function tsk Δ.
  Proof.
    moveΔ IN UNIQ.
    rewrite /total_hep_request_bound_function_FP /total_ohep_request_bound_function_FP.
    rewrite (bigID_idem _ _ (fun tskotsko != tsk)) //=.
    apply /eqP; rewrite eqn_add2l.
    rewrite (eq_bigl (fun ii == tsk)); last first.
    - movetsko.
      case (tsko == tsk) eqn: EQ; last by lia.
      move : EQ ⇒ /eqP →.
      by rewrite H_priority_is_reflexive //=.
    - rewrite (big_rem tsk) //= eq_refl.
      rewrite big_seq_cond big_pred0; first by rewrite addn0 //=.
      movetsko.
      case (tsko == tsk) eqn: EQ; last by lia.
      move : EQ ⇒ /eqP →.
      rewrite andbT.
      by apply mem_rem_uniqF ⇒ //=.
  Qed.

If the task set may contain duplicates, then the we can only say that the sum of other higher-or-equal-priority RBF and task tsk's RBF is at most the total higher-or-equal-priority workload.
  Lemma split_hep_rbf_weaken:
     Δ,
      tsk \in ts
      total_ohep_request_bound_function_FP ts tsk Δ + task_request_bound_function tsk Δ
       total_hep_request_bound_function_FP ts tsk Δ.
  Proof.
    moveΔ IN.
    rewrite /total_hep_request_bound_function_FP /total_ohep_request_bound_function_FP.
    rewrite [leqRHS](bigID_idem _ _ (fun tskotsko != tsk)) //=.
    apply leq_add; first by done.
    rewrite (eq_bigl (fun tskotsko == tsk)); last first.
    - movetsko.
      case (tsko ==tsk) eqn: TSKEQ; last by lia.
      move : TSKEQ ⇒ /eqP →.
      by rewrite (H_priority_is_reflexive tsk) //=.
    - rewrite (big_rem tsk) //= eq_refl.
      by apply leq_addr.
  Qed.

End FP_RBF_partitioning.

In this section, we state a few facts for RBFs in the context of a fixed-priority policy.
Section RBFFOrFP.

Consider a set of tasks characterized by WCETs and arrival curves.
For any fixed-priority policy, ...
  Context `{FP_policy Task}.

... total_ohep_request_bound_function_FP at 0 is always 0.
  Lemma total_ohep_rbf0 :
     (tsk : Task),
      total_ohep_request_bound_function_FP ts tsk 0 = 0.
  Proof.
    rewrite /total_ohep_request_bound_function_FPtsk.
    apply /eqP.
    rewrite sum_nat_eq0_nat.
    apply /allPtsk' IN.
    apply /eqP.
    apply task_rbf_0_zero ⇒ //=.
    apply H_valid_arrival_curve.
    rewrite mem_filter in IN.
    by move : IN ⇒ /andP[_ ->].
  Qed.

Next we show how total_ohep_request_bound_function_FP can bound the workload of jobs in a given interval.
Consider any types of jobs.
  Context `{Job : JobType} `{JobTask Job Task} `{JobCost Job}.

Consider any arrival sequence that only has jobs from the task set and where all arrivals have a valid job cost.
Assume there exists an arrival curve and that the arrival sequence respects this curve.
Consider any task tsk and any job j of the task tsk.
  Variable j : Job.
  Variable tsk : Task.
  Hypothesis H_job_of_task : job_of_task tsk j.

For any interval [t1, t1 + Δ), the workload of jobs that have higher task priority than the task priority of j is bounded by total_ohep_request_bound_function_FP for the duration Δ.
  Lemma ohep_workload_le_rbf :
     Δ t1,
      workload_of_jobs (another_task_hep_job^~ j) (arrivals_between arr_seq t1 (t1 + Δ))
       total_ohep_request_bound_function_FP ts tsk Δ.
  Proof.
    moveΔ t1.
    rewrite /workload_of_jobs /total_ohep_request_bound_function_FP.
    rewrite /another_task_hep_job /hep_job /FP_to_JLFP.
    set (pred_task tsk_other := hep_task tsk_other tsk && (tsk_other != tsk)).
    rewrite (eq_big (fun jpred_task (job_task j)) job_cost) //;
      last by movej'; rewrite /pred_task; move: H_job_of_task ⇒ /eqP →.
    erewrite (eq_big pred_task); [|by done|by movetsk'; eauto].
    by apply: sum_of_jobs_le_sum_rbf.
  Qed.

End RBFFOrFP.

We know that the workload of a task in any interval must be bounded by the task's RBF in that interval. However, in the proofs of several lemmas, we are required to reason about the workload of a task in an interval excluding the cost of a particular job (usually the job under analysis). Such a workload can be tightly bounded by the task's RBF for the interval excluding the cost of one task.
Notice, however, that this is not a trivial result since a naive approach to proving it would fail. Suppose we want to prove that some quantity A - B is upper bounded by some quantity C - D. This usually requires us to prove that A is upper bounded by C and D is upper bounded by B. In our case, this would be equivalent to proving that the task cost is upper-bounded by the job cost, which of course is not true.
So, a different approach is needed, which we show in this section.
Section TaskWorkload.

Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{TaskCost Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context `{JobTask Job Task}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.

Consider any arrival sequence ...
... and assume that WCETs are respected.
Let tsk be any task ...
  Variable tsk : Task.

... characterized by a valid arrival curve.
Consider any job j of tsk ...
  Variable j : Job.
  Hypothesis H_job_of_task : job_of_task tsk j.

... that arrives in the given arrival sequence.
  Hypothesis H_j_arrives_in : arrives_in arr_seq j.

Consider any time instant t1 and duration Δ such that j arrives before t1 + Δ.
  Variables (t1 : instant) (Δ : duration).
  Hypothesis H_job_arrival_lt : job_arrival j < t1 + Δ.

As a preparatory step, we restrict our attention to the sub-interval containing the job's arrival. We know that the job's arrival necessarily happens in the interval ([job_arrival j], t1 + Δ). This allows us to show that the task workload excluding the task cost can be bounded by the cost of the arrivals in the interval as follows.
  Lemma task_rbf_without_job_under_analysis_from_arrival :
    task_workload_between arr_seq tsk (job_arrival j) (t1 + Δ) - job_cost j
     task_cost tsk × number_of_task_arrivals arr_seq tsk (job_arrival j) (t1 + Δ)
       - task_cost tsk.
  Proof.
    rewrite /task_workload_between /workload.task_workload_between /task_workload
      /workload_of_jobs /number_of_task_arrivals /task_arrivals_between.
    rewrite (big_rem j) //= addnC //= H_job_of_task addnK (filter_size_rem j)//.
    rewrite mulnDr mulnC muln1 addnK mulnC.
    apply sum_majorant_constantj' ARR' /eqP TSK2.
    rewrite -TSK2; apply H_arrivals_have_valid_job_costs.
    apply rem_in in ARR'.
    by eapply in_arrivals_implies_arrived ⇒ //=.
  Qed.

To use the above lemma in our final theorem, we require that the arrival of the job under analysis necessarily happens in the interval we are considering.
  Hypothesis H_j_arrives_after_t : t1 job_arrival j.

Under the above assumption, we can finally establish the desired bound.
  Lemma task_rbf_without_job_under_analysis :
    task_workload_between arr_seq tsk t1 (t1 + Δ) - job_cost j
     task_request_bound_function tsk Δ - task_cost tsk.
  Proof.
    apply leq_trans with
      (task_cost tsk × number_of_task_arrivals arr_seq tsk t1 (t1 + Δ) - task_cost tsk); last first.
    - rewrite leq_sub2r // leq_mul2l; apply/orP ⇒ //=; right.
      have POSE: Δ = (t1 + Δ - t1) by lia.
      rewrite [in leqRHS]POSE.
      eapply (H_is_arrival_curve t1 (t1 + Δ)).
      by lia.
    - rewrite (@num_arrivals_of_task_cat _ _ _ _ _ (job_arrival j)); last by apply /andP; split.
      rewrite mulnDr.
      rewrite /task_workload_between /task_workload (workload_of_jobs_cat _ (job_arrival j) );
        last by apply/andP; split; lia.
      rewrite -!addnBA; first last.
      + by rewrite /task_workload_between /task_workload
          /workload_of_jobs (big_rem j) //= H_job_of_task leq_addr.
      + rewrite -{1}[task_cost tsk]muln1 leq_mul2l; apply/orP; right.
        rewrite /number_of_task_arrivals /task_arrivals_between.
        rewrite size_filter -has_count; apply/hasP; j; last by rewrite H_job_of_task.
        apply (mem_bigcat _ Job _ (job_arrival j) _); last by apply job_in_arrivals_at ⇒ //=.
        rewrite mem_index_iota.
        by apply /andP;split.
      + have ->: job_arrival j = t1 + (job_arrival j - t1) by lia.
        have ->: t1 + (job_arrival j - t1) = job_arrival j by lia.
        rewrite leq_add//; last by apply task_rbf_without_job_under_analysis_from_arrival ⇒ //=.
        have ->: job_arrival j = t1 + (job_arrival j - t1) by lia.
        by eapply (task_workload_le_num_of_arrivals_times_cost ) ⇒ //=.
  Qed.

End TaskWorkload.