Library prosa.analysis.facts.transform.wc_correctness

Correctness of the work-conservation transformation

This file contains the main argument of the work-conservation proof, starting with an analysis of the individual functions that drive the work-conservation transformation of a given reference schedule and ending with the proofs of individual properties of the obtained work-conserving schedule.
In order to discuss the correctness of the work-conservation transformation at a high level, we first need a set of lemmas about the inner parts of the procedure.
We assume ideal uni-processor schedules.
  #[local] Existing Instance ideal.processor_state.

We assume the basic (i.e., Liu & Layland) readiness model under which any pending job is ready.
  #[local] Existing Instance basic_ready_instance.

Consider any type of jobs with arrival times, costs, and deadlines...
  Context {Job : JobType}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.
  Context `{JobDeadline Job}.

...and an arbitrary arrival sequence.
We introduce the notion of work-conservation at a given time t. The definition is based on the concept of readiness of a job, and states that the presence of a ready job implies that the processor is not idle.
First, we prove some useful properties about the most fundamental operation of the work-conservation transformation: swapping two processor states t1 and fsc, with fsc being a valid swap candidate of t1.
Consider an ideal uniprocessor schedule...
    Variable sched: schedule (ideal.processor_state Job). which jobs must be ready to execute.
Consider an arbitrary time instant t1.
    Variable t1: instant.

Let us define fsc as the result of the search for a swap candidate starting from t1...
...and sched' as the schedule resulting from the swap.
    Let sched' := swapped sched t1 fsc.

First, we show that, in any case, the result of the search will yield an instant that is in the future (or, in case of failure, equal to t1).
    Lemma swap_candidate_is_in_future:
      t1 fsc.
      rewrite /fsc /find_swap_candidate.
      destruct search_arg as [n|] eqn:search_result ⇒ [|//].
      apply search_arg_in_range in search_result.
      by move:search_result ⇒ /andP [LEQ LMAX].

Also, we show that the search will not yield jobs that arrive later than the given reference time.
    Lemma fsc_respects_has_arrived:
       j t,
        sched (find_swap_candidate arr_seq sched t) == Some j
        has_arrived j t.
      movej t.
      rewrite /find_swap_candidate.
      destruct search_arg eqn:RES; last first.
      { rewrite -scheduled_in_defsched_j.
        apply: (ready_implies_arrived sched).
        exact: job_scheduled_implies_ready. }
      { move⇒ /eqP SCHED_J.
        move: RES ⇒ /search_arg_pred.
        rewrite SCHED_J //. }

Next, we extend the previous lemma by stating that no job in the transformed schedule is scheduled before its arrival.
    Lemma swap_jobs_must_arrive_to_execute:
        jobs_must_arrive_to_execute sched'.
      movej t SCHED_AT.
      move: (swap_job_scheduled_cases _ _ _ _ _ SCHED_AT)=> [OTHER |[AT_T1 | AT_T2]].
      { apply: (ready_implies_arrived sched).
        by apply: job_scheduled_implies_ready; rewrite // -OTHER. }
      { set t2 := find_swap_candidate arr_seq sched t1 in AT_T1.
        move: AT_T1 ⇒ [EQ_T1 SCHED_AT'].
        apply fsc_respects_has_arrived.
        move: SCHED_AT.
        rewrite EQ_T1 /SCHED_AT' /sched' -/t2.
        rewrite EQ_T1 in SCHED_AT'.
        rewrite SCHED_AT' /scheduled_at.
        by rewrite scheduled_in_def. }
      set t2 := find_swap_candidate arr_seq sched t1 in AT_T2.
      move: AT_T2 ⇒ [EQ_T2 SCHED_AT'].
      have ORDER: t1t2 by apply swap_candidate_is_in_future.
      have READY: job_ready sched j t1.
      { by apply: job_scheduled_implies_ready; rewrite // -SCHED_AT'. }
      rewrite /job_ready /basic_ready_instance /pending /completed_by in READY.
      move: READY ⇒ /andP [ARR _].
      rewrite EQ_T2.
      exact: (leq_trans ARR).

Finally we show that, in the transformed schedule, jobs are scheduled only if they are ready.
    Lemma fsc_jobs_must_be_ready_to_execute:
      jobs_must_be_ready_to_execute sched'.
      movej t SCHED_AT.
      rewrite /sched'.
      set t2 := find_swap_candidate arr_seq sched t1.
      rewrite /job_ready /basic_ready_instance /pending.
      apply /andP; split; first by apply swap_jobs_must_arrive_to_execute.
      rewrite /completed_by; rewrite -ltnNge.
      apply swapped_completed_jobs_dont_execute ⇒ //.
      - exact: swap_candidate_is_in_future.
      - exact: completed_jobs_are_not_ready.

  End JobsMustBeReadyFindSwapCandidate.

In the following section, we put our attention on the point-wise transformation performed at each point in time prior to the horizon.
  Section MakeWCAtFacts.

Consider an ideal uniprocessor schedule...
    Variable sched: schedule (ideal.processor_state Job).

...and take an arbitrary point in time...
    Variable t: instant.

...we define sched' as the resulting schedule after one point-wise transformation.
    Let sched' := make_wc_at arr_seq sched t.

We start by proving that the point-wise transformation can only lead to higher service for a job at a given time. This is true because we swap only idle processor states with ones in which a job is scheduled.
    Lemma mwa_service_bound:
       j t, service sched j t service sched' j t.
      intros j t'.
      rewrite /sched' /make_wc_at.
      destruct (sched t) eqn:PSTATE ⇒ //.
      set t2:= (find_swap_candidate arr_seq sched t).
      move: (swap_candidate_is_in_future sched t) ⇒ ORDER.
      destruct (leqP t' t) as [BOUND1|BOUND1];
        first by rewrite (service_before_swap_invariant _ t t2) ⇒ //.
      destruct (ltnP t2 t') as [BOUND2 | BOUND2];
        first by rewrite (service_after_swap_invariant _ t t2) ⇒ //.
      destruct (scheduled_at sched j t) eqn:SCHED_AT_T1;
        first by move:SCHED_AT_T1; rewrite scheduled_at_def PSTATE ⇒ /eqP.
      move: SCHED_AT_T1 ⇒ /negbT NOT_AT_t1.
      destruct (scheduled_at sched j t2) eqn:SCHED_AT_T2;
        last by move: SCHED_AT_T2 ⇒ /negbT NOT_AT_t2; rewrite (service_of_others_invariant _ t t2).
      rewrite /swapped /service -service_at_other_times_invariant; last by left.
      rewrite service_in_replaced; last by apply /andP; split ⇒ //.
      rewrite (not_scheduled_implies_no_service _ _ _ NOT_AT_t1) subn0.
        by apply leq_addr.

Next, we show that any ready job in the transformed schedule must be ready also in the original one, since the transformation can only lead to higher service.
    Lemma mwa_ready_job_also_ready_in_original_schedule:
       j t, job_ready sched' j t job_ready sched j t.
      intros j t'.
      rewrite /job_ready /basic_ready_instance /pending.
      move⇒ /andP [ARR COMP_BY].
      rewrite ARR Bool.andb_true_l //.
      move: COMP_BY; apply contra.
      rewrite /completed_by.
      have LEQ: (service sched j t') (service sched' j t') by apply mwa_service_bound.
      moveLEQ'; move:LEQ; move: LEQ'.
        by apply leq_trans.

Since the search for a swap candidate is performed until the latest deadline among all the jobs arrived before the reference time, we need to show that the computed deadline is indeed the latest.
    Lemma max_dl_is_greatest_dl:
       j t,
        arrives_in arr_seq j
        job_arrival j t
        job_deadline j max_deadline_for_jobs_arrived_before arr_seq t.
      movej t' ARR_IN ARR.
      rewrite /max_deadline_for_jobs_arrived_before.
      apply in_max0_le; apply map_f.
      rewrite /arrivals_up_to.
      apply arrived_between_implies_in_arrivals;
        by move:H_arr_seq_valid ⇒ [CONS UNIQ].

Next, we want to show that, if a job arriving from the arrival sequence is ready at some instant, then the point-wise transformation is guaranteed to find a job to swap with. We will proceed by doing a case analysis, and show that it is impossible that a swap candidate is not found.
    Section MakeWCAtFindsReadyJobs.

We need to assume that, in the original schedule, all the deadlines of the jobs coming from the arrival sequence are met, in order to be sure that a ready job will be eventually scheduled.
We define max_dl as the maximum deadline for all jobs arrived before t.
Next, we define search_result as the result of the search for a swap candidate. In order to take the first result, it is sufficient to define the ordering function as a constant false.
      Definition order (_ _ : nat) := false.
      Definition search_result := search_arg sched (relevant_pstate t) order t max_dl.

First, we consider the case in which the procedure finds a job to swap with.
Assuming that the processor is idle at time t...
        Hypothesis H_sched_t_idle: ideal_is_idle sched t.

...let t_swap be a time instant found by the search procedure.
        Variable t_swap: instant.
        Hypothesis search_result_found: search_result = Some t_swap.

We show that, since the search only yields relevant processor states, a job is found.
        Lemma make_wc_at_case_result_found:
           j: Job,
            swapped sched t t_swap t = Some j.
          apply search_arg_pred in search_result_found.
          move:search_result_found; rewrite /relevant_pstate.
          destruct (sched t_swap) as [j_swap|] eqn:SCHED ⇒ [|//].
          moveARR. rewrite /swapped /replace_at.
          destruct (t_swap == t) eqn:SAME_SWAP.
          + move:SAME_SWAP ⇒ /eqP SAME_SWAP; subst t_swap.
            move:H_sched_t_idle ⇒ /eqP SCHED_NONE.
            by rewrite SCHED_NONE in SCHED; discriminate.
          + by j_swap; rewrite eq_refl; apply SCHED.

      End MakeWCAtFindsReadyJobs_CaseResultFound.

Conversely, we prove that assuming that the search yields no result brings to a contradiction.
Consider a job that arrives in the arrival sequence, and assume that it is ready at time t in the transformed schedule.
        Variable j: Job.
        Hypothesis H_arrives_in: arrives_in arr_seq j.
        Hypothesis H_job_ready_sched': job_ready sched' j t.

Moreover, assume the search for a swap candidate yields nothing.
        Hypothesis H_search_result_none: search_result = None.

First, note that, since nothing was found, it means there is no relevant processor state between t and max_dl.
        Lemma no_relevant_state_in_range:
            t t' < max_dl
            ~~ (relevant_pstate t) (sched t').
            by apply (search_arg_none _ _ (fun _ _false)).

Since j is ready at time t, then it must be incomplete.
        Lemma service_of_j_is_less_than_cost: service sched j t < job_cost j.
          have READY_ORIG: job_ready sched j t
            by apply (mwa_ready_job_also_ready_in_original_schedule _ _); apply H_job_ready_sched'.
          rewrite /job_ready /basic_ready_instance /pending.
          move:READY_ORIG ⇒ /andP [ARR_ NOT_COMPL_ORIG].
          rewrite /completed_by in NOT_COMPL_ORIG.
            by rewrite leqNgt; apply NOT_COMPL_ORIG.

And since j is incomplete and meets its deadline, the deadline of j is in the future.
        Lemma t_is_less_than_deadline_of_j: t job_deadline j.
          move: (H_all_deadlines_of_arrivals_met j H_arrives_in)=> MEETS_DL_j.
          move_neq_up LEQ_t1.
          unfold job_meets_deadline, completed_by in MEETS_DL_j; move_neq_down MEETS_DL_j.
          eapply leq_ltn_trans; last apply service_of_j_is_less_than_cost.
            by apply service_monotonic, ltnW.

On the other hand, since we know that there is no relevant state between t and max_dl, then it must be the case that j is never scheduled in this period, and hence gets no service.
        Lemma equal_service_t_max_dl: service sched j t = service sched j max_dl.
          move:(H_job_ready_sched') ⇒ /andP [ARR NOT_COMPL_sched'].
          rewrite -(service_cat sched j t max_dl);
            last by apply (leq_trans t_is_less_than_deadline_of_j), max_dl_is_greatest_dl.
          have ZERO_SERVICE: service_during sched j t max_dl = 0.
          { apply not_scheduled_during_implies_zero_service.
            movet_at RANGE.
            move:(no_relevant_state_in_range t_at RANGE) ⇒ NOT_REL.
            rewrite scheduled_at_def.
            apply/negP; move ⇒ /eqP EQ.
              by move: NOT_REL ⇒ /negP T; apply: T; rewrite EQ.
            by rewrite ZERO_SERVICE; rewrite addn0.

Combining the previous lemmas, we can deduce that j misses its deadline.
        Lemma j_misses_deadline: service sched j (job_deadline j) < job_cost j.
          move:(H_job_ready_sched') ⇒ /andP [ARR NOT_COMPL_sched'].
          have J_LESS := service_of_j_is_less_than_cost.
          rewrite equal_service_t_max_dl in J_LESS.
          specialize (H_all_deadlines_of_arrivals_met j H_arrives_in).
          unfold job_meets_deadline, completed_by in H_all_deadlines_of_arrivals_met.
          eapply leq_ltn_trans.
          - by apply service_monotonic, (max_dl_is_greatest_dl _ _ H_arrives_in ARR).
          - by apply J_LESS.

The fact that j misses its deadline contradicts the fact that all deadlines of jobs coming from the arrival sequence are met. We have a contradiction.
        Lemma make_wc_at_case_result_none: False.
          move: (H_all_deadlines_of_arrivals_met j H_arrives_in) ⇒ NEQ.
          unfold job_meets_deadline, completed_by in NEQ.
          move_neq_down NEQ.
            by apply j_misses_deadline.

      End MakeWCAtFindsReadyJobs_CaseResultNone.

Next, we show that make_wc_at always manages to establish the work-conservation property at the given time. Using the above case analysis, we can conclude that the presence of a ready job always leads to a valid swap.
      Lemma mwa_finds_ready_jobs:
        all_deadlines_of_arrivals_met arr_seq sched
        is_work_conserving_at sched' t.
        moveALL_DL_MET P_PREFIX.
        destruct (sched t) as [j'|] eqn:SCHED_WC_t;
          first by rewrite /sched' /make_wc_at SCHED_WC_t; j'.
        move: P_PREFIX ⇒ [j [ARR_IN READY]].
        rewrite /sched' /make_wc_at.
        rewrite SCHED_WC_t /find_swap_candidate.
        destruct search_arg as [t_swap| ] eqn:SEARCH_RES.
        - by apply make_wc_at_case_result_found; move:SCHED_WC_t ⇒ /eqP.
        - by exfalso; apply (make_wc_at_case_result_none j); eauto.

    End MakeWCAtFindsReadyJobs.

Next we prove that, given a schedule that respects the work-conservation property until t-1, applying the point-wise transformation at time t will extend the property until t.
    Lemma mwa_establishes_wc:
      all_deadlines_of_arrivals_met arr_seq sched
      ( t_l, t_l < t is_work_conserving_at sched t_l)
       t_l, t_l t is_work_conserving_at sched' t_l.
      movePROP P_PREFIX t' T_MIN [j [ARR_IN READY]].
      set fsc := find_swap_candidate arr_seq sched t.
      have LEQ_fsc: t fsc by apply swap_candidate_is_in_future.
      destruct (ltnP t' t) as [tLT | tGE].
      { have SAME: sched' t' = sched t'.
        { rewrite /sched' /make_wc_at.
          destruct (sched t) ⇒ [//|].
          by rewrite (swap_before_invariant sched t fsc). }
        rewrite SAME.
        apply P_PREFIX; eauto.
         j; split; auto.
          by eapply mwa_ready_job_also_ready_in_original_schedule, READY.
      { have EQ: t' = t.
        { by apply /eqP; rewrite eqn_leq; apply /andP; split. }
        subst t'; clear T_MIN tGE.
        exact: mwa_finds_ready_jobs. }

We now show that the point-wise transformation does not introduce any new job that does not come from the arrival sequence.
    Lemma mwa_jobs_come_from_arrival_sequence:
      jobs_come_from_arrival_sequence sched arr_seq
      jobs_come_from_arrival_sequence sched' arr_seq.
      rewrite /sched' /make_wc_at.
      destruct (sched t) as [j_orig|] eqn:SCHED_orig ⇒ [//|].
      exact: swapped_jobs_come_from_arrival_sequence.

We also show that the point-wise transformation does not schedule jobs in instants in which they are not ready.
    Lemma mwa_jobs_must_be_ready_to_execute:
      jobs_must_be_ready_to_execute sched
      jobs_must_be_ready_to_execute sched'.
      rewrite /sched' /make_wc_at.
      destruct (sched t) as [j_orig|] eqn:SCHED_orig ⇒ [//|].
      exact: fsc_jobs_must_be_ready_to_execute.

Finally, we show that the point-wise transformation does not introduce deadline misses.
    Lemma mwa_all_deadlines_of_arrivals_met:
      all_deadlines_of_arrivals_met arr_seq sched
      all_deadlines_of_arrivals_met arr_seq sched'.
      moveALL j ARR.
      specialize (ALL j ARR).
      unfold job_meets_deadline, completed_by in ×.
      by apply (leq_trans ALL (mwa_service_bound _ _)).

  End MakeWCAtFacts.

In the following section, we proceed by proving some useful properties respected by the partial schedule obtained by applying the work-conservation transformation up to an arbitrary horizon.
  Section PrefixFacts.

Consider an ideal uniprocessor schedule.
    Variable sched: schedule (ideal.processor_state Job).

We start by proving that the transformation performed with two different horizons will yield two schedules that are identical until the earlier horizon.
    Section PrefixInclusion.

Consider two horizons...
      Variable h1 h2: instant.

...and assume w.l.o.g. that they are ordered...
      Hypothesis H_horizon_order: h1 h2.

...we define two schedules, resulting from the transformation performed, respectively, until the first and the second horizon.
Then, we show that the two schedules are guaranteed to be equal until the earlier horizon.
      Lemma wc_transform_prefix_inclusion:
         t, t < h1 sched1 t = sched2 t.
        movet before_horizon.
        rewrite /sched1 /sched2.
        elim: h2 H_horizon_order ⇒ [|i IHi] horizon_order;
                                    first by move: (leq_trans before_horizon horizon_order).
        move: horizon_order; rewrite leq_eqVlt ⇒ /orP [/eqP→ // | LT].
        move: LT. rewrite ltnSH_horizon_order_lt.
        rewrite [RHS]/wc_transform_prefix /prefix_map -/prefix_map IHi //.
        rewrite {1}/make_wc_at.
        destruct (prefix_map sched (make_wc_at arr_seq) i i) as [j|] eqn:SCHED ⇒ [//|].
        rewrite -(swap_before_invariant _ i (find_swap_candidate arr_seq (wc_transform_prefix arr_seq sched i) i)).
        - by [].
        - exact: swap_candidate_is_in_future.
        - by apply leq_trans with (n := h1).

    End PrefixInclusion.

Next, we show that repeating the point-wise transformation up to a given horizon does not introduce any deadline miss.
    Section JobsMeetDeadlinePrefix.

Assuming that all deadlines of jobs coming from the arrival sequence are met...
...let us define sched' as the schedule resulting from the full work-conservation transformation. Note that, if the schedule is sampled at time t, the transformation is performed until t+1.
      Let sched' := wc_transform arr_seq sched.

Consider a job from the arrival sequence.
      Variable j: Job.
      Hypothesis H_arrives_in: arrives_in arr_seq j.

We show that, in the transformed schedule, the service of the job is always greater or equal than in the original one, at any given time.
      Lemma wc_prefix_service_bound:
         t, service sched j t service sched' j t.
        rewrite /sched' /wc_transform.
        set serv := service (fun t0 : instantwc_transform_prefix arr_seq sched t0.+1 t0) j t.
        set servp := service (wc_transform_prefix arr_seq sched t.+1) j t.
        have ->: serv = servp.
        { rewrite /serv /servp /service /service_during.
          apply eq_big_natt' /andP [_ LT_t].
          rewrite /service_at.
          by rewrite (wc_transform_prefix_inclusion t'.+1 t.+1). }
        rewrite /servp /wc_transform_prefix.
        clear serv servp.
        apply prefix_map_property_invariance ⇒ [|//].
        movesched0 ? ?; apply leq_trans with (service sched0 j t)=> //.
        by intros; apply mwa_service_bound.

Finally, it follows directly that the transformed schedule cannot introduce a deadline miss for any job from the arrival sequence.
      Lemma wc_prefix_job_meets_deadline:
        job_meets_deadline sched' j.
        rewrite /job_meets_deadline /completed_by /sched'.
        apply leq_trans with (service sched j (job_deadline j));
          last by apply wc_prefix_service_bound.
        by apply H_all_deadlines_of_arrivals_met.

    End JobsMeetDeadlinePrefix.

Next, consider a given time, used as horizon for the transformation...
    Variable h: instant.

...and let us call sched' the schedule resulting from the transformation performed until h.
We prove that sched' will never introduce jobs not coming from the arrival sequence.
    Lemma wc_prefix_jobs_come_from_arrival_sequence:
      jobs_come_from_arrival_sequence sched arr_seq
      jobs_come_from_arrival_sequence sched' arr_seq.
      rewrite /sched' /wc_transform_prefix.
      apply prefix_map_property_invariance ⇒ [|//].
      moveschedX t ARR.
      by apply mwa_jobs_come_from_arrival_sequence.

Similarly, we can show that sched' will only schedule jobs if they are ready.
    Lemma wc_prefix_jobs_must_be_ready_to_execute:
      jobs_must_be_ready_to_execute sched
      jobs_must_be_ready_to_execute sched'.
      rewrite /sched' /wc_transform_prefix.
      apply prefix_map_property_invariance ⇒ [|//].
      moveschedX t ARR.
      by apply mwa_jobs_must_be_ready_to_execute.

  End PrefixFacts.

End AuxiliaryLemmasWorkConservingTransformation.

Finally, we can leverage all the previous results to prove statements about the full work-conservation transformation.
We assume the basic (i.e., Liu & Layland) readiness model under which any pending job is ready.
  #[local] Existing Instance basic_ready_instance.

Consider any type of jobs with arrival times, costs, and deadlines...
  Context {Job : JobType}.
  Context `{JobArrival Job}.
  Context `{JobCost Job}.
  Context `{JobDeadline Job}. arbitrary valid arrival sequence...
...and an ideal uniprocessor schedule... which jobs come from the arrival sequence, and must be ready to execute...
...and in which no job misses a deadline.
Let us call sched_wc the schedule obtained after applying the work-conservation transformation.
First, we show that any scheduled job still comes from the arrival sequence.
  Lemma wc_jobs_come_from_arrival_sequence:
    jobs_come_from_arrival_sequence sched_wc arr_seq.
    movej t.
    rewrite /scheduled_at -/(scheduled_at _ j t).
    exact: (wc_prefix_jobs_come_from_arrival_sequence arr_seq sched t.+1).

Similarly, jobs are only scheduled if they are ready.
  Lemma wc_jobs_must_be_ready_to_execute:
    jobs_must_be_ready_to_execute sched_wc.
    movej t.
    rewrite /scheduled_at /sched_wc /wc_transform -/(scheduled_at _ j t) ⇒ SCHED_AT.
    have READY': job_ready (wc_transform_prefix arr_seq sched t.+1) j t by
                   exact: wc_prefix_jobs_must_be_ready_to_execute.
    move: READY'.
    rewrite /job_ready /basic.basic_ready_instance
            /pending /completed_by /service.
    rewrite (equal_prefix_implies_same_service_during sched_wc (wc_transform_prefix arr_seq sched t.+1)) //.
    movet' /andP [_ BOUND_t'].
    rewrite /sched_wc /wc_transform.
    by apply wc_transform_prefix_inclusion ⇒ //; rewrite ltnS; apply ltnW.

Also, no deadline misses are introduced.
  Lemma wc_all_deadlines_of_arrivals_met:
    all_deadlines_of_arrivals_met arr_seq sched_wc.
    movej ARR_IN.
    rewrite /sched_wc /wc_transform_prefix.
    by apply wc_prefix_job_meets_deadline.

Finally, we can show that the transformation leads to a schedule in which the processor is not idle if a job is ready.
  Lemma wc_is_work_conserving_at:
     j t,
      job_ready sched_wc j t
      arrives_in arr_seq j
       j', sched_wc t = Some j'.
    movej t READY ARR_IN.
    rewrite /sched_wc /wc_transform /wc_transform_prefix.
    apply (prefix_map_pointwise_property (all_deadlines_of_arrivals_met arr_seq)
                                         (is_work_conserving_at arr_seq)
                                         (make_wc_at arr_seq)); rewrite //.
    { by apply mwa_all_deadlines_of_arrivals_met. }
    { by intros; apply mwa_establishes_wc. }
    { j.
      split; first by apply ARR_IN.
      have EQ: job_ready sched_wc j t = job_ready (prefix_map sched (make_wc_at arr_seq) (succn t)) j t.
        rewrite /sched_wc /wc_transform /job_ready
                /basic_ready_instance /pending /completed_by
                /service /service_during /service_at /wc_transform_prefix.
        destruct has_arrived; last by rewrite Bool.andb_false_l.
        have EQ_SUM: \sum_(0 t0 < t) service_in j (prefix_map sched (make_wc_at arr_seq) (succn t0) t0)
                  = \sum_(0 t0 < t) service_in j (prefix_map sched (make_wc_at arr_seq) (succn t) t0).
        { apply eq_big_natt' /andP [_ LT_t].
           rewrite -/(wc_transform_prefix arr_seq sched _ _).
           rewrite -/(wc_transform_prefix arr_seq sched _ _).
           by rewrite (wc_transform_prefix_inclusion arr_seq sched t'.+1 t.+1). }
        by rewrite EQ_SUM. }
      move: READY. by rewrite EQ. }

We can easily extend the previous lemma to obtain the definition of a work-conserving schedule.
  Lemma wc_is_work_conserving:
    work_conserving arr_seq sched_wc.
    movej t ARR_IN.
    rewrite /backlogged ⇒ /andP [READY _].
    move: (wc_is_work_conserving_at j t READY ARR_IN) ⇒ [j' SCHED_wc].
    by j'; rewrite scheduled_at_def; apply /eqP.

Ultimately, we can show that the work-conservation transformation maintains all the properties of validity, does not introduce new deadline misses, and establishes the work-conservation property.