Library prosa.analysis.abstract.restricted_supply.bounded_bi.aux
Helper Lemmas for Bounded Busy Interval Lemmas
Consider any type of tasks ...
... and any type of jobs associated with these tasks.
Context {Job : JobType}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Context `{JobTask Job Task}.
Context `{JobArrival Job}.
Context `{JobCost Job}.
Consider any kind of fully supply-consuming unit-supply
uniprocessor model.
Context `{PState : ProcessorState Job}.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
Consider a JLFP policy that indicates a higher-or-equal
priority relation, and assume that the relation is reflexive.
Context {JLFP : JLFP_policy Job}.
Hypothesis H_priority_is_reflexive : reflexive_job_priorities JLFP.
Hypothesis H_priority_is_reflexive : reflexive_job_priorities JLFP.
Consider any valid arrival sequence.
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
Hypothesis H_valid_arrival_sequence : valid_arrival_sequence arr_seq.
Next, consider a schedule of this arrival sequence, ...
... allow for any work-bearing notion of job readiness, ...
... and assume that the schedule is valid.
Recall that busy_intervals_are_bounded_by is an abstract
notion. Hence, we need to introduce interference and interfering
workload. We will use the restricted-supply instantiations.
We say that job j incurs interference at time t iff it
cannot execute due to (1) the lack of supply at time t, (2)
service inversion (i.e., a lower-priority job receiving service
at t), or a higher-or-equal-priority job receiving service.
The interfering workload, in turn, is defined as the sum of the
blackout predicate, service inversion predicate, and the
interfering workload of jobs with higher or equal priority.
#[local] Instance rs_jlfp_interfering_workload : InterferingWorkload Job :=
rs_jlfp_interfering_workload arr_seq sched.
rs_jlfp_interfering_workload arr_seq sched.
Assume that the schedule is work-conserving in the abstract sense.
Variable j : Job.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_cost_positive : job_cost_positive j.
Hypothesis H_j_arrives : arrives_in arr_seq j.
Hypothesis H_job_cost_positive : job_cost_positive j.
First, we note that, since job j is pending at time
job_arrival j, there is a (potentially unbounded) busy
interval that starts no later than with the arrival of j.
Lemma busy_interval_prefix_exists :
∃ t1,
t1 ≤ job_arrival j
∧ busy_interval_prefix arr_seq sched j t1 (job_arrival j).+1.
Proof.
have PEND : pending sched j (job_arrival j) by apply job_pending_at_arrival ⇒ //.
have PREFIX := busy_interval.exists_busy_interval_prefix ltac:(eauto) j.
feed (PREFIX (job_arrival j)); first by done.
move: PREFIX ⇒ [t1 [PREFIX /andP [GE1 _]]].
by eexists; split; last by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix ⇒ //.
Qed.
∃ t1,
t1 ≤ job_arrival j
∧ busy_interval_prefix arr_seq sched j t1 (job_arrival j).+1.
Proof.
have PEND : pending sched j (job_arrival j) by apply job_pending_at_arrival ⇒ //.
have PREFIX := busy_interval.exists_busy_interval_prefix ltac:(eauto) j.
feed (PREFIX (job_arrival j)); first by done.
move: PREFIX ⇒ [t1 [PREFIX /andP [GE1 _]]].
by eexists; split; last by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix ⇒ //.
Qed.
We show that the service of higher-or-equal-priority jobs is
less than the workload of higher-or-equal-priority jobs in any
subinterval
[t1, t)
of the interval [t1, t2)
.
Lemma service_lt_workload_in_busy :
∀ t,
t1 < t < t2 →
service_of_hep_jobs arr_seq sched j t1 t < workload_of_hep_jobs arr_seq j t1 t.
Proof.
move⇒ t /andP [LT1 LT2]; move: (H_busy_prefix) ⇒ PREF.
move_neq_up LE.
have EQ: workload_of_hep_jobs arr_seq j t1 t = service_of_hep_jobs arr_seq sched j t1 t.
{ apply/eqP; rewrite eqn_leq; apply/andP; split ⇒ //.
by apply service_of_jobs_le_workload ⇒ //.
}
clear LE; move: PREF ⇒ [LT [QT1 [NQT QT2]]].
specialize (NQT t ltac:(lia)); apply: NQT ⇒ s ARR HEP BF.
have EQ2: workload_of_hep_jobs arr_seq j 0 t = service_of_hep_jobs arr_seq sched j 0 t.
{ rewrite /workload_of_hep_jobs (workload_of_jobs_cat _ t1); last by lia.
rewrite /service_of_hep_jobs (service_of_jobs_cat_scheduling_interval _ _ _ _ _ 0 t t1) //; last by lia.
rewrite /workload_of_hep_jobs in EQ; rewrite EQ; clear EQ.
apply/eqP; rewrite eqn_add2r.
replace (service_of_jobs sched (hep_job^~ j) (arrivals_between arr_seq 0 t1) t1 t) with 0; last first.
{ symmetry; apply: big1_seq ⇒ h /andP [HEPh BWh].
apply big1_seq ⇒ t' /andP [_ IN].
apply not_scheduled_implies_no_service, completed_implies_not_scheduled ⇒ //.
apply: completion_monotonic; last apply QT1 ⇒ //.
{ by rewrite mem_index_iota in IN; lia. }
{ by apply: in_arrivals_implies_arrived. }
{ by apply: in_arrivals_implies_arrived_before. }
}
rewrite addn0; apply/eqP.
apply all_jobs_have_completed_impl_workload_eq_service ⇒ //.
move ⇒ h ARRh HEPh; apply: QT1 ⇒ //.
- by apply: in_arrivals_implies_arrived.
- by apply: in_arrivals_implies_arrived_before.
}
by apply: workload_eq_service_impl_all_jobs_have_completed ⇒ //.
Qed.
∀ t,
t1 < t < t2 →
service_of_hep_jobs arr_seq sched j t1 t < workload_of_hep_jobs arr_seq j t1 t.
Proof.
move⇒ t /andP [LT1 LT2]; move: (H_busy_prefix) ⇒ PREF.
move_neq_up LE.
have EQ: workload_of_hep_jobs arr_seq j t1 t = service_of_hep_jobs arr_seq sched j t1 t.
{ apply/eqP; rewrite eqn_leq; apply/andP; split ⇒ //.
by apply service_of_jobs_le_workload ⇒ //.
}
clear LE; move: PREF ⇒ [LT [QT1 [NQT QT2]]].
specialize (NQT t ltac:(lia)); apply: NQT ⇒ s ARR HEP BF.
have EQ2: workload_of_hep_jobs arr_seq j 0 t = service_of_hep_jobs arr_seq sched j 0 t.
{ rewrite /workload_of_hep_jobs (workload_of_jobs_cat _ t1); last by lia.
rewrite /service_of_hep_jobs (service_of_jobs_cat_scheduling_interval _ _ _ _ _ 0 t t1) //; last by lia.
rewrite /workload_of_hep_jobs in EQ; rewrite EQ; clear EQ.
apply/eqP; rewrite eqn_add2r.
replace (service_of_jobs sched (hep_job^~ j) (arrivals_between arr_seq 0 t1) t1 t) with 0; last first.
{ symmetry; apply: big1_seq ⇒ h /andP [HEPh BWh].
apply big1_seq ⇒ t' /andP [_ IN].
apply not_scheduled_implies_no_service, completed_implies_not_scheduled ⇒ //.
apply: completion_monotonic; last apply QT1 ⇒ //.
{ by rewrite mem_index_iota in IN; lia. }
{ by apply: in_arrivals_implies_arrived. }
{ by apply: in_arrivals_implies_arrived_before. }
}
rewrite addn0; apply/eqP.
apply all_jobs_have_completed_impl_workload_eq_service ⇒ //.
move ⇒ h ARRh HEPh; apply: QT1 ⇒ //.
- by apply: in_arrivals_implies_arrived.
- by apply: in_arrivals_implies_arrived_before.
}
by apply: workload_eq_service_impl_all_jobs_have_completed ⇒ //.
Qed.
Consider a subinterval
[t1, t1 + Δ)
of the interval [t1,
t2)>>. We show that the sum of j's workload and the cumulative
workload in [t1, t1 + Δ)
is strictly larger than Δ.
Lemma workload_exceeds_interval :
∀ Δ,
0 < Δ →
t1 + Δ < t2 →
Δ < workload_of_job arr_seq j t1 (t1 + Δ) + cumulative_interfering_workload j t1 (t1 + Δ).
Proof.
move⇒ δ POS LE; move: (H_busy_prefix) ⇒ PREF.
apply leq_ltn_trans with (service_during sched j t1 (t1 + δ) + cumulative_interference j t1 (t1 + δ)).
{ rewrite /service_during /cumulative_interference /cumul_cond_interference /cond_interference /service_at.
rewrite -big_split //= -{1}(sum_of_ones t1 δ) big_nat [in X in _ ≤ X]big_nat.
apply leq_sum ⇒ x /andP[Lo Hi].
{ move: (H_work_conserving j t1 t2 x) ⇒ Workj.
feed_n 4 Workj; try done.
{ by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix. }
{ by apply/andP; split; eapply leq_trans; eauto. }
destruct interference.
- by lia.
- by rewrite //= addn0; apply Workj.
}
}
rewrite cumulative_interfering_workload_split // cumulative_interference_split //.
rewrite cumulative_iw_hep_eq_workload_of_ohep cumulative_i_ohep_eq_service_of_ohep //; last by apply PREF.
rewrite -[leqRHS]addnC -[leqRHS]addnA [(_ + workload_of_job _ _ _ _ )]addnC.
rewrite workload_job_and_ahep_eq_workload_hep //.
rewrite -addnC -addnA [(_ + service_during _ _ _ _ )]addnC.
rewrite service_plus_ahep_eq_service_hep //; last by move: PREF ⇒ [_ [_ [_ /andP [A B]]]].
rewrite ltn_add2l.
by apply: service_lt_workload_in_busy; eauto; lia.
Qed.
End BoundedBusyIntervalsAux.
∀ Δ,
0 < Δ →
t1 + Δ < t2 →
Δ < workload_of_job arr_seq j t1 (t1 + Δ) + cumulative_interfering_workload j t1 (t1 + Δ).
Proof.
move⇒ δ POS LE; move: (H_busy_prefix) ⇒ PREF.
apply leq_ltn_trans with (service_during sched j t1 (t1 + δ) + cumulative_interference j t1 (t1 + δ)).
{ rewrite /service_during /cumulative_interference /cumul_cond_interference /cond_interference /service_at.
rewrite -big_split //= -{1}(sum_of_ones t1 δ) big_nat [in X in _ ≤ X]big_nat.
apply leq_sum ⇒ x /andP[Lo Hi].
{ move: (H_work_conserving j t1 t2 x) ⇒ Workj.
feed_n 4 Workj; try done.
{ by apply instantiated_busy_interval_prefix_equivalent_busy_interval_prefix. }
{ by apply/andP; split; eapply leq_trans; eauto. }
destruct interference.
- by lia.
- by rewrite //= addn0; apply Workj.
}
}
rewrite cumulative_interfering_workload_split // cumulative_interference_split //.
rewrite cumulative_iw_hep_eq_workload_of_ohep cumulative_i_ohep_eq_service_of_ohep //; last by apply PREF.
rewrite -[leqRHS]addnC -[leqRHS]addnA [(_ + workload_of_job _ _ _ _ )]addnC.
rewrite workload_job_and_ahep_eq_workload_hep //.
rewrite -addnC -addnA [(_ + service_during _ _ _ _ )]addnC.
rewrite service_plus_ahep_eq_service_hep //; last by move: PREF ⇒ [_ [_ [_ /andP [A B]]]].
rewrite ltn_add2l.
by apply: service_lt_workload_in_busy; eauto; lia.
Qed.
End BoundedBusyIntervalsAux.