Library prosa.analysis.facts.transform.edf_wc
Require Import prosa.model.readiness.basic.
Require Export prosa.analysis.facts.transform.edf_opt.
Require Export prosa.analysis.facts.transform.wc_correctness.
Require Export prosa.analysis.facts.behavior.deadlines.
Require Export prosa.analysis.facts.readiness.backlogged.
Require Export prosa.analysis.facts.transform.edf_opt.
Require Export prosa.analysis.facts.transform.wc_correctness.
Require Export prosa.analysis.facts.behavior.deadlines.
Require Export prosa.analysis.facts.readiness.backlogged.
Optimality of Work-Conserving EDF on Ideal Uniprocessors
Non-Idle Swaps
We assume the classic (i.e., Liu & Layland) model of readiness
without jitter or self-suspensions, wherein pending jobs are
always ready.
For any given type of jobs...
... and any valid job arrival sequence.
...consider an ideal uniprocessor schedule...
...that is well-behaved (i.e., in which jobs execute only after having
arrived and only if they are not yet complete, and in which all jobs come
from the arrival sequence).
Hypothesis H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute: completed_jobs_dont_execute sched.
Hypothesis H_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq.
Hypothesis H_completed_jobs_dont_execute: completed_jobs_dont_execute sched.
Hypothesis H_from_arr_seq: jobs_come_from_arrival_sequence sched arr_seq.
...which we assume to be ordered (to avoid dealing with symmetric cases),...
Now consider an arbitrary job j...
...and an arbitrary instant t...
...and is backlogged in swap_sched at instant t.
We proceed by case analysis. We first show that, if t equals t1, then
swap_sched maintains work conservation. That is, there exists some job
that's scheduled in swap_sched at instant t
Lemma non_idle_swap_maintains_work_conservation_t1 :
work_conserving arr_seq sched →
t = t1 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ _ EQ; rewrite EQ; by ∃ j2; rewrite swap_job_scheduled_t1.
Qed.
work_conserving arr_seq sched →
t = t1 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ _ EQ; rewrite EQ; by ∃ j2; rewrite swap_job_scheduled_t1.
Qed.
Lemma non_idle_swap_maintains_work_conservation_t2 :
work_conserving arr_seq sched →
t = t2 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ _ EQ; rewrite EQ; by ∃ j1; rewrite swap_job_scheduled_t2.
Qed.
work_conserving arr_seq sched →
t = t2 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ _ EQ; rewrite EQ; by ∃ j1; rewrite swap_job_scheduled_t2.
Qed.
Lemma non_idle_swap_maintains_work_conservation_LEQ_t1 :
work_conserving arr_seq sched →
t ≤ t1 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ WC_sched LEQ.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ]; first by apply non_idle_swap_maintains_work_conservation_t1.
case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ']; first by apply non_idle_swap_maintains_work_conservation_t2.
have [j_other j_other_scheduled] : ∃ j_other, scheduled_at sched j_other t.
{ rewrite /work_conserving in WC_sched. apply (WC_sched j) ⇒ //; move :H_backlogged_j_t.
rewrite /backlogged/job_ready/basic_ready_instance/pending/completed_by.
move /andP ⇒ [ARR_INCOMP scheduled]; move :ARR_INCOMP; move /andP ⇒ [arrive not_comp].
apply /andP; split; first (apply /andP; split) ⇒ //.
+ by rewrite (service_before_swap_invariant sched t1 t2 _ t).
+ by rewrite -(swap_job_scheduled_other_times _ t1 t2 j t) //; (apply /neqP; eauto).
}
∃ j_other; by rewrite (swap_job_scheduled_other_times) //; do 2! (apply /neqP; eauto).
Qed.
work_conserving arr_seq sched →
t ≤ t1 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ WC_sched LEQ.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ]; first by apply non_idle_swap_maintains_work_conservation_t1.
case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ']; first by apply non_idle_swap_maintains_work_conservation_t2.
have [j_other j_other_scheduled] : ∃ j_other, scheduled_at sched j_other t.
{ rewrite /work_conserving in WC_sched. apply (WC_sched j) ⇒ //; move :H_backlogged_j_t.
rewrite /backlogged/job_ready/basic_ready_instance/pending/completed_by.
move /andP ⇒ [ARR_INCOMP scheduled]; move :ARR_INCOMP; move /andP ⇒ [arrive not_comp].
apply /andP; split; first (apply /andP; split) ⇒ //.
+ by rewrite (service_before_swap_invariant sched t1 t2 _ t).
+ by rewrite -(swap_job_scheduled_other_times _ t1 t2 j t) //; (apply /neqP; eauto).
}
∃ j_other; by rewrite (swap_job_scheduled_other_times) //; do 2! (apply /neqP; eauto).
Qed.
Lemma non_idle_swap_maintains_work_conservation_GT_t2 :
work_conserving arr_seq sched →
t2 < t →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ WC_sched GT.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ]; first by apply non_idle_swap_maintains_work_conservation_t1.
case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ']; first by apply non_idle_swap_maintains_work_conservation_t2.
have [j_other j_other_scheduled] : ∃ j_other, scheduled_at sched j_other t.
{ rewrite /work_conserving in WC_sched. apply (WC_sched j) ⇒ //; move :H_backlogged_j_t.
rewrite /backlogged/job_ready/basic_ready_instance/pending/completed_by.
move /andP ⇒ [ARR_INCOMP scheduled]; move :ARR_INCOMP; move /andP ⇒ [arrive not_comp].
apply /andP; split; first (apply /andP; split) ⇒ //.
+ by rewrite (service_after_swap_invariant sched t1 t2 _ t) // /t2; apply fsc_range1.
+ by rewrite -(swap_job_scheduled_other_times _ t1 t2 j t) //; (apply /neqP; eauto).
}
∃ j_other; by rewrite (swap_job_scheduled_other_times) //; do 2! (apply /neqP; eauto).
Qed.
work_conserving arr_seq sched →
t2 < t →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ WC_sched GT.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ]; first by apply non_idle_swap_maintains_work_conservation_t1.
case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ']; first by apply non_idle_swap_maintains_work_conservation_t2.
have [j_other j_other_scheduled] : ∃ j_other, scheduled_at sched j_other t.
{ rewrite /work_conserving in WC_sched. apply (WC_sched j) ⇒ //; move :H_backlogged_j_t.
rewrite /backlogged/job_ready/basic_ready_instance/pending/completed_by.
move /andP ⇒ [ARR_INCOMP scheduled]; move :ARR_INCOMP; move /andP ⇒ [arrive not_comp].
apply /andP; split; first (apply /andP; split) ⇒ //.
+ by rewrite (service_after_swap_invariant sched t1 t2 _ t) // /t2; apply fsc_range1.
+ by rewrite -(swap_job_scheduled_other_times _ t1 t2 j t) //; (apply /neqP; eauto).
}
∃ j_other; by rewrite (swap_job_scheduled_other_times) //; do 2! (apply /neqP; eauto).
Qed.
Lemma non_idle_swap_maintains_work_conservation_BET_t1_t2 :
work_conserving arr_seq sched →
t1 < t ≤ t2 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ WC_sched H_range.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ]; first by apply non_idle_swap_maintains_work_conservation_t1.
case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ']; first by apply non_idle_swap_maintains_work_conservation_t2.
move: H_range. move /andP ⇒ [LT GE].
case: (boolP(scheduled_at sched j2 t)) ⇒ Hj'.
- ∃ j2; by rewrite (swap_job_scheduled_other_times _ t1 t2 j2 t) //; (apply /neqP; eauto).
- have [j_other j_other_scheduled] : ∃ j_other, scheduled_at sched j_other t.
{ rewrite /work_conserving in WC_sched. apply (WC_sched j2).
- by unfold jobs_come_from_arrival_sequence in H_from_arr_seq; apply (H_from_arr_seq _ t2) ⇒ //.
- rewrite/backlogged/job_ready/basic_ready_instance/pending/completed_by.
apply /andP; split⇒ [|//]; apply /andP; split⇒ //.
+ by rewrite /has_arrived; apply (leq_trans H_arrival_j2); apply ltnW.
+ rewrite -ltnNge. apply (leq_ltn_trans) with (service sched j2 t2).
× exact: service_monotonic.
× exact: H_completed_jobs_dont_execute. }
by ∃ j_other; rewrite swap_job_scheduled_other_times//; apply /neqP.
Qed.
End NonIdleSwapWorkConservationLemmas.
work_conserving arr_seq sched →
t1 < t ≤ t2 →
∃ j_other, scheduled_at swap_sched j_other t.
Proof.
move⇒ WC_sched H_range.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ]; first by apply non_idle_swap_maintains_work_conservation_t1.
case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ']; first by apply non_idle_swap_maintains_work_conservation_t2.
move: H_range. move /andP ⇒ [LT GE].
case: (boolP(scheduled_at sched j2 t)) ⇒ Hj'.
- ∃ j2; by rewrite (swap_job_scheduled_other_times _ t1 t2 j2 t) //; (apply /neqP; eauto).
- have [j_other j_other_scheduled] : ∃ j_other, scheduled_at sched j_other t.
{ rewrite /work_conserving in WC_sched. apply (WC_sched j2).
- by unfold jobs_come_from_arrival_sequence in H_from_arr_seq; apply (H_from_arr_seq _ t2) ⇒ //.
- rewrite/backlogged/job_ready/basic_ready_instance/pending/completed_by.
apply /andP; split⇒ [|//]; apply /andP; split⇒ //.
+ by rewrite /has_arrived; apply (leq_trans H_arrival_j2); apply ltnW.
+ rewrite -ltnNge. apply (leq_ltn_trans) with (service sched j2 t2).
× exact: service_monotonic.
× exact: H_completed_jobs_dont_execute. }
by ∃ j_other; rewrite swap_job_scheduled_other_times//; apply /neqP.
Qed.
End NonIdleSwapWorkConservationLemmas.
Work-Conserving Swap Candidates
We assume the classic (i.e., Liu & Layland) model of readiness
without jitter or self-suspensions, wherein pending jobs are
always ready.
For any given type of jobs...
...and any valid job arrival sequence,...
...consider an ideal uniprocessor schedule...
...that is well-behaved (i.e., in which jobs execute only after having
arrived and only if they are not yet complete)...
Hypothesis H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute: completed_jobs_dont_execute sched.
Hypothesis H_completed_jobs_dont_execute: completed_jobs_dont_execute sched.
...and in which all jobs come from the arrival sequence.
Suppose we are given a job j1...
...and a point in time t1...
...at which j1 is scheduled...
...and that is before j1's deadline.
We now show that, if t2 is a swap candidate returned by
find_swap_candidate for t1, then swapping the processor allocations at
the two instants maintains work conservation.
Corollary fsc_swap_maintains_work_conservation :
work_conserving arr_seq sched →
work_conserving arr_seq (swapped sched t1 (edf_trans.find_swap_candidate sched t1 j1)).
Proof.
set t2 := edf_trans.find_swap_candidate sched t1 j1.
have [j2 [t2_not_idle t2_arrival]] : ∃ j2, scheduled_at sched j2 t2 ∧ job_arrival j2 ≤ t1
by apply fsc_not_idle.
have H_range : t1 ≤ t2 by apply fsc_range1.
move⇒ WC_sched j t ARR BL.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ].
- by apply (non_idle_swap_maintains_work_conservation_t1 arr_seq _ _ _ j2).
- case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ'].
+ by apply (non_idle_swap_maintains_work_conservation_t2 arr_seq _ _ _ j1).
+ case: (boolP((t ≤ t1) || (t2 < t))) ⇒ [NOT_BET | BET]. (* t <> t2 *)
× move: NOT_BET; move/orP ⇒ [] ⇒ NOT_BET.
{ by apply (non_idle_swap_maintains_work_conservation_LEQ_t1 arr_seq _ _ _ H_range _ _ H_not_idle t2_not_idle j). }
{ by apply (non_idle_swap_maintains_work_conservation_GT_t2 arr_seq _ _ _ H_range _ _ H_not_idle t2_not_idle j). }
× move: BET; rewrite negb_or. move /andP. case; rewrite <- ltnNge ⇒ range1; rewrite <- leqNgt ⇒ range2.
have BET: (t1 < t) && (t ≤ t2) by apply /andP.
now apply (non_idle_swap_maintains_work_conservation_BET_t1_t2 arr_seq _ H_completed_jobs_dont_execute H_from_arr_seq _ _ _ _ t2_arrival H_not_idle t2_not_idle ).
Qed.
End FSCWorkConservationLemmas.
work_conserving arr_seq sched →
work_conserving arr_seq (swapped sched t1 (edf_trans.find_swap_candidate sched t1 j1)).
Proof.
set t2 := edf_trans.find_swap_candidate sched t1 j1.
have [j2 [t2_not_idle t2_arrival]] : ∃ j2, scheduled_at sched j2 t2 ∧ job_arrival j2 ≤ t1
by apply fsc_not_idle.
have H_range : t1 ≤ t2 by apply fsc_range1.
move⇒ WC_sched j t ARR BL.
case: (boolP(t == t1)) ⇒ [/eqP EQ| /eqP NEQ].
- by apply (non_idle_swap_maintains_work_conservation_t1 arr_seq _ _ _ j2).
- case: (boolP(t == t2)) ⇒ [/eqP EQ'| /eqP NEQ'].
+ by apply (non_idle_swap_maintains_work_conservation_t2 arr_seq _ _ _ j1).
+ case: (boolP((t ≤ t1) || (t2 < t))) ⇒ [NOT_BET | BET]. (* t <> t2 *)
× move: NOT_BET; move/orP ⇒ [] ⇒ NOT_BET.
{ by apply (non_idle_swap_maintains_work_conservation_LEQ_t1 arr_seq _ _ _ H_range _ _ H_not_idle t2_not_idle j). }
{ by apply (non_idle_swap_maintains_work_conservation_GT_t2 arr_seq _ _ _ H_range _ _ H_not_idle t2_not_idle j). }
× move: BET; rewrite negb_or. move /andP. case; rewrite <- ltnNge ⇒ range1; rewrite <- leqNgt ⇒ range2.
have BET: (t1 < t) && (t ≤ t2) by apply /andP.
now apply (non_idle_swap_maintains_work_conservation_BET_t1_t2 arr_seq _ H_completed_jobs_dont_execute H_from_arr_seq _ _ _ _ t2_arrival H_not_idle t2_not_idle ).
Qed.
End FSCWorkConservationLemmas.
Work-Conservation of the Point-Wise EDF Transformation
We assume the classic (i.e., Liu & Layland) model of readiness
without jitter or self-suspensions, wherein pending jobs are
always ready.
For any given type of jobs...
... and any valid job arrival sequence, ...
... consider an ideal uniprocessor schedule ...
... in which all jobs come from the arrival sequence, ...
...that is well-behaved,...
Hypothesis H_jobs_must_arrive_to_execute: jobs_must_arrive_to_execute sched.
Hypothesis H_completed_jobs_dont_execute: completed_jobs_dont_execute sched.
Hypothesis H_completed_jobs_dont_execute: completed_jobs_dont_execute sched.
...and in which no scheduled job misses a deadline.
We analyze make_edf_at applied to an arbitrary point in time,
which we denote t_edf in the following.
For brevity, let sched' denote the schedule obtained from
make_edf_at applied to sched at time t_edf.
We show that, if a schedule is work-conserving, then applying
make_edf_at to it at an arbitrary instant t_edf maintains work
conservation.
Lemma mea_maintains_work_conservation :
work_conserving arr_seq sched → work_conserving arr_seq sched'.
Proof.
rewrite /sched'/make_edf_at ⇒ WC_sched. destruct (sched t_edf) as [s|] eqn:E ⇒ //.
apply fsc_swap_maintains_work_conservation ⇒ //.
- by rewrite scheduled_at_def; apply /eqP ⇒ //.
- apply (scheduled_at_implies_later_deadline sched) ⇒ //.
+ rewrite /all_deadlines_met in (H_no_deadline_misses).
now apply (H_no_deadline_misses s t_edf); rewrite scheduled_at_def; apply /eqP.
+ by rewrite scheduled_at_def; apply/eqP ⇒ //.
Qed.
End MakeEDFWorkConservationLemmas.
work_conserving arr_seq sched → work_conserving arr_seq sched'.
Proof.
rewrite /sched'/make_edf_at ⇒ WC_sched. destruct (sched t_edf) as [s|] eqn:E ⇒ //.
apply fsc_swap_maintains_work_conservation ⇒ //.
- by rewrite scheduled_at_def; apply /eqP ⇒ //.
- apply (scheduled_at_implies_later_deadline sched) ⇒ //.
+ rewrite /all_deadlines_met in (H_no_deadline_misses).
now apply (H_no_deadline_misses s t_edf); rewrite scheduled_at_def; apply /eqP.
+ by rewrite scheduled_at_def; apply/eqP ⇒ //.
Qed.
End MakeEDFWorkConservationLemmas.
Work-Conserving EDF Prefix
We assume the classic (i.e., Liu & Layland) model of readiness
without jitter or self-suspensions, wherein pending jobs are
always ready.
For any given type of jobs, each characterized by execution
costs, an arrival time, and an absolute deadline,...
... and any valid job arrival sequence, ...
... consider an ideal uniprocessor schedule,...
... an arbitrary finite horizon, and ...
...let sched_trans denote the schedule obtained by transforming
sched up to the horizon.
Let schedule_behavior_premises define the premise that a schedule is:
1) well-behaved,
2) has all jobs coming from the arrival sequence arr_seq, and
3) in which no scheduled job misses its deadline
Definition scheduled_behavior_premises (sched : schedule (processor_state Job)) :=
jobs_must_arrive_to_execute sched
∧ completed_jobs_dont_execute sched
∧ jobs_come_from_arrival_sequence sched arr_seq
∧ all_deadlines_met sched.
jobs_must_arrive_to_execute sched
∧ completed_jobs_dont_execute sched
∧ jobs_come_from_arrival_sequence sched arr_seq
∧ all_deadlines_met sched.
For brevity, let P denote the predicate that a schedule satisfies
scheduled_behavior_premises and is work-conserving.
Let P (sched : schedule (processor_state Job)) :=
scheduled_behavior_premises sched ∧ work_conserving arr_seq sched.
scheduled_behavior_premises sched ∧ work_conserving arr_seq sched.
We show that if sched is work-conserving, then so is sched_trans.
Lemma edf_transform_prefix_maintains_work_conservation:
P sched → P sched_trans.
Proof.
rewrite/sched_trans/edf_transform_prefix. apply (prefix_map_property_invariance ). rewrite /P.
move⇒ sched' t [[H_ARR [H_COMPLETED [H_COME H_all_deadlines_met]]] H_wc_sched].
rewrite/scheduled_behavior_premises/valid_schedule; split; first split.
- by apply mea_jobs_must_arrive.
- split; last split.
+ by apply mea_completed_jobs.
+ by apply mea_jobs_come_from_arrival_sequence.
+ by apply mea_no_deadline_misses.
- by apply mea_maintains_work_conservation.
Qed.
End EDFPrefixWorkConservationLemmas.
P sched → P sched_trans.
Proof.
rewrite/sched_trans/edf_transform_prefix. apply (prefix_map_property_invariance ). rewrite /P.
move⇒ sched' t [[H_ARR [H_COMPLETED [H_COME H_all_deadlines_met]]] H_wc_sched].
rewrite/scheduled_behavior_premises/valid_schedule; split; first split.
- by apply mea_jobs_must_arrive.
- split; last split.
+ by apply mea_completed_jobs.
+ by apply mea_jobs_come_from_arrival_sequence.
+ by apply mea_no_deadline_misses.
- by apply mea_maintains_work_conservation.
Qed.
End EDFPrefixWorkConservationLemmas.
Work-Conservation of the EDF Transformation
We assume the classic (i.e., Liu & Layland) model of readiness
without jitter or self-suspensions, wherein pending jobs are
always ready.
For any given type of jobs, each characterized by execution
costs, an arrival time, and an absolute deadline,...
... and any valid job arrival sequence, ...
... consider a valid ideal uniprocessor schedule ...
Variable sched: schedule (ideal.processor_state Job).
Hypothesis H_sched_valid: valid_schedule sched arr_seq.
Hypothesis H_sched_valid: valid_schedule sched arr_seq.
...and in which no scheduled job misses a deadline.
We first note that sched satisfies scheduled_behavior_premises.
Lemma sched_satisfies_behavior_premises : scheduled_behavior_premises arr_seq sched.
Proof.
split; [ apply (jobs_must_arrive_to_be_ready sched) | split; [ apply (completed_jobs_are_not_ready sched) | split]].
all: by try apply H_sched_valid.
Qed.
Proof.
split; [ apply (jobs_must_arrive_to_be_ready sched) | split; [ apply (completed_jobs_are_not_ready sched) | split]].
all: by try apply H_sched_valid.
Qed.
We prove that, if the given schedule sched is work-conserving, then the
schedule that results from transforming it into an EDF schedule is also
work-conserving.
Lemma edf_transform_maintains_work_conservation :
work_conserving arr_seq sched → work_conserving arr_seq (edf_transform sched).
Proof.
move⇒ WC_sched j t ARR.
set sched_edf := edf_transform sched.
have IDENT: identical_prefix sched_edf (edf_transform_prefix sched t.+1) t.+1
by rewrite /sched_edf/edf_transform ⇒ t' LE_t; apply (edf_prefix_inclusion) ⇒ //; apply sched_satisfies_behavior_premises.
rewrite (backlogged_prefix_invariance _ _ (edf_transform_prefix sched t.+1) t.+1) // ⇒ BL;
last by apply basic_readiness_nonclairvoyance.
have WC_trans: work_conserving arr_seq (edf_transform_prefix sched (succn t))
by apply edf_transform_prefix_maintains_work_conservation; split ⇒ //; apply sched_satisfies_behavior_premises.
move: (WC_trans _ _ ARR BL) ⇒ [j_other SCHED_AT].
∃ j_other.
now rewrite (identical_prefix_scheduled_at _ (edf_transform_prefix sched t.+1) t.+1) //.
Qed.
End EDFTransformWorkConservationLemmas.
work_conserving arr_seq sched → work_conserving arr_seq (edf_transform sched).
Proof.
move⇒ WC_sched j t ARR.
set sched_edf := edf_transform sched.
have IDENT: identical_prefix sched_edf (edf_transform_prefix sched t.+1) t.+1
by rewrite /sched_edf/edf_transform ⇒ t' LE_t; apply (edf_prefix_inclusion) ⇒ //; apply sched_satisfies_behavior_premises.
rewrite (backlogged_prefix_invariance _ _ (edf_transform_prefix sched t.+1) t.+1) // ⇒ BL;
last by apply basic_readiness_nonclairvoyance.
have WC_trans: work_conserving arr_seq (edf_transform_prefix sched (succn t))
by apply edf_transform_prefix_maintains_work_conservation; split ⇒ //; apply sched_satisfies_behavior_premises.
move: (WC_trans _ _ ARR BL) ⇒ [j_other SCHED_AT].
∃ j_other.
now rewrite (identical_prefix_scheduled_at _ (edf_transform_prefix sched t.+1) t.+1) //.
Qed.
End EDFTransformWorkConservationLemmas.