Library prosa.results.prm.fp.limited_preemptive
Require Import prosa.analysis.facts.readiness.basic.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.preemption.rtc_threshold.limited.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.fp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fp.
Require Export prosa.analysis.facts.model.sbf.periodic.
Require Export prosa.model.composite.valid_task_arrival_sequence.
Require Export prosa.analysis.facts.preemption.rtc_threshold.limited.
Require Export prosa.analysis.abstract.restricted_supply.task_intra_interference_bound.
Require Export prosa.analysis.abstract.restricted_supply.bounded_bi.fp.
Require Export prosa.analysis.abstract.restricted_supply.search_space.fp.
Require Export prosa.analysis.facts.model.sbf.periodic.
RTA for FP Scheduling with Fixed Preemption Points on Uniprocessors under the Periodic Resource Model
Defining the System Model
- tasks, jobs, and their parameters,
- the task set and the task under analysis,
- the processor model,
- the sequence of job arrivals,
- the absence of self-suspensions,
- an arbitrary schedule of the task set, and finally,
- the resource-supply model.
Tasks and Jobs
... and their associated jobs, where each job has a corresponding task
job_task, an execution time job_cost, an arrival time job_arrival,
and a list of preemption points job_preemptable.
Context {Job : JobType} `{JobTask Job Task} `{JobCost Job} `{JobArrival Job}
`{JobPreemptionPoints Job}.
`{JobPreemptionPoints Job}.
We assume that jobs are limited-preemptive.
Context `{PState : ProcessorState Job}.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
Hypothesis H_uniprocessor_proc_model : uniprocessor_model PState.
Hypothesis H_unit_supply_proc_model : unit_supply_proc_model PState.
Hypothesis H_consumed_supply_proc_model : fully_consuming_proc_model PState.
The Job Arrival Sequence
Variable arr_seq : arrival_sequence Job.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
Hypothesis H_valid_task_arrival_sequence : valid_task_arrival_sequence ts arr_seq.
We assume a model with fixed preemption points. I.e., each task is divided
into a number of non-preemptive segments by inserting statically
predefined preemption points.
Hypothesis H_valid_model_with_fixed_preemption_points :
valid_fixed_preemption_points_model arr_seq ts.
valid_fixed_preemption_points_model arr_seq ts.
Absence of Self-Suspensions
The Schedule
Context {FP : FP_policy Task}.
Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP.
Hypothesis H_priority_is_transitive : transitive_task_priorities FP.
Hypothesis H_priority_is_reflexive : reflexive_task_priorities FP.
Hypothesis H_priority_is_transitive : transitive_task_priorities FP.
Consider a work-conserving, valid uniprocessor schedule with limited
preemptions that corresponds to the given arrival sequence arr_seq (and
hence the given task set ts).
Variable sched : schedule PState.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_schedule_with_limited_preemptions :
schedule_respects_preemption_model arr_seq sched.
Hypothesis H_valid_schedule : valid_schedule sched arr_seq.
Hypothesis H_work_conserving : work_conserving arr_seq sched.
Hypothesis H_schedule_with_limited_preemptions :
schedule_respects_preemption_model arr_seq sched.
We assume that the schedule respects the given FP scheduling policy.
Furthermore, we require that the schedule ensures that jobs of the same
task are executed in the order of their arrival.
Periodic Resource Model
[Π⋅k, Π⋅(k+1))
, the processor
provides at least γ units of supply. Furthermore, let prm_sbf Π γ
denote the corresponding SBF defined in the paper, which, as proven in the
same paper and verified in prosa.analysis.facts.model.sbf.periodic, is a
valid SBF.
Maximum Length of a Busy Interval
Definition busy_window_recurrence_solution (L : duration) :=
L > 0
∧ prm_sbf Π γ L ≥ blocking_bound ts tsk + total_hep_request_bound_function_FP ts tsk L.
L > 0
∧ prm_sbf Π γ L ≥ blocking_bound ts tsk + total_hep_request_bound_function_FP ts tsk L.
Response-Time Bound
Definition rta_recurrence_solution L R :=
∀ (A : duration),
is_in_search_space tsk L A →
∃ (F : duration),
prm_sbf Π γ F ≥ blocking_bound ts tsk
+ (task_request_bound_function tsk (A + ε) - (task_last_nonpr_segment tsk - ε))
+ total_ohep_request_bound_function_FP ts tsk F
∧ prm_sbf Π γ (A + R) ≥ prm_sbf Π γ F + (task_last_nonpr_segment tsk - ε)
∧ A + R ≥ F.
∀ (A : duration),
is_in_search_space tsk L A →
∃ (F : duration),
prm_sbf Π γ F ≥ blocking_bound ts tsk
+ (task_request_bound_function tsk (A + ε) - (task_last_nonpr_segment tsk - ε))
+ total_ohep_request_bound_function_FP ts tsk F
∧ prm_sbf Π γ (A + R) ≥ prm_sbf Π γ F + (task_last_nonpr_segment tsk - ε)
∧ A + R ≥ F.
Finally, using the sequential variant of abstract restricted-supply
analysis, we establish that, given a bound on the maximum busy-window
length L, any such R is indeed a sound response-time bound for task
tsk under FP scheduling with limited preemptions on a unit-speed
uniprocessor under the periodic resource model.
Theorem uniprocessor_response_time_bound_limited_fp :
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
move⇒ L [BW_POS BW_SOL] R SOL js ARRs TSKs.
have VAL1 : valid_preemption_model arr_seq sched
by apply valid_fixed_preemption_points_model_lemma, H_valid_model_with_fixed_preemption_points.
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk (prm_sbf Π γ).
{ by apply: valid_pred_sbf_switch_predicate; last apply prm_sbf_valid. }
have US : unit_supply_bound_function (prm_sbf Π γ) by exact: prm_sbf_unit.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := prm_sbf Π γ) ⇒ //=.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- by exact: instantiated_interference_and_workload_consistent_with_sequential_tasks ⇒ //.
- eapply busy_intervals_are_bounded_rs_fp with (SBF := prm_sbf Π γ) ⇒ //=.
by eapply instantiated_i_and_w_are_coherent_with_schedule.
- apply: valid_pred_sbf_switch_predicate; last first.
+ by apply prm_sbf_valid.
+ by move ⇒ ? ? ? ? [? ?]; split ⇒ //.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by apply athep_workload_le_total_ohep_rbf.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
unshelve rewrite (leqRW (nonpreemptive_segments_bounded_by_blocking _ _ _ _ _ _ _ _ _)) ⇒ //.
by instantiate (1 := fun _ ⇒ blocking_bound ts tsk).
- move ⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence.
+ move ⇒ F [FIX1 [FIX2 FIX3]]; ∃ F; split ⇒ //; split.
× erewrite last_segment_eq_cost_minus_rtct; [ | eauto | eauto ].
by rewrite /task_intra_IBF; lia.
× by erewrite last_segment_eq_cost_minus_rtct; [ | eauto | eauto ]; lia.
Qed.
End RTAforLimitedPreemptiveFPModelwithArrivalCurves.
∀ (L : duration),
busy_window_recurrence_solution L →
∀ (R : duration),
rta_recurrence_solution L R →
task_response_time_bound arr_seq sched tsk R.
Proof.
move⇒ L [BW_POS BW_SOL] R SOL js ARRs TSKs.
have VAL1 : valid_preemption_model arr_seq sched
by apply valid_fixed_preemption_points_model_lemma, H_valid_model_with_fixed_preemption_points.
have [ZERO|POS] := posnP (job_cost js); first by rewrite /job_response_time_bound /completed_by ZERO.
have VBSBF : valid_busy_sbf arr_seq sched tsk (prm_sbf Π γ).
{ by apply: valid_pred_sbf_switch_predicate; last apply prm_sbf_valid. }
have US : unit_supply_bound_function (prm_sbf Π γ) by exact: prm_sbf_unit.
have POStsk: 0 < task_cost tsk
by move: TSKs ⇒ /eqP <-; apply: leq_trans; [apply POS | apply H_valid_task_arrival_sequence].
eapply uniprocessor_response_time_bound_restricted_supply_seq with (L := L) (SBF := prm_sbf Π γ) ⇒ //=.
- exact: instantiated_i_and_w_are_coherent_with_schedule.
- by exact: instantiated_interference_and_workload_consistent_with_sequential_tasks ⇒ //.
- eapply busy_intervals_are_bounded_rs_fp with (SBF := prm_sbf Π γ) ⇒ //=.
by eapply instantiated_i_and_w_are_coherent_with_schedule.
- apply: valid_pred_sbf_switch_predicate; last first.
+ by apply prm_sbf_valid.
+ by move ⇒ ? ? ? ? [? ?]; split ⇒ //.
- apply: instantiated_task_intra_interference_is_bounded; eauto 1 ⇒ //; first last.
+ by apply athep_workload_le_total_ohep_rbf.
+ apply: service_inversion_is_bounded ⇒ // ⇒ jo t1 t2 ARRo TSKo BUSYo.
unshelve rewrite (leqRW (nonpreemptive_segments_bounded_by_blocking _ _ _ _ _ _ _ _ _)) ⇒ //.
by instantiate (1 := fun _ ⇒ blocking_bound ts tsk).
- move ⇒ A SP; move: (SOL A) ⇒ [].
+ apply: search_space_sub ⇒ //=.
by apply: non_pathological_max_arrivals =>//; apply H_valid_task_arrival_sequence.
+ move ⇒ F [FIX1 [FIX2 FIX3]]; ∃ F; split ⇒ //; split.
× erewrite last_segment_eq_cost_minus_rtct; [ | eauto | eauto ].
by rewrite /task_intra_IBF; lia.
× by erewrite last_segment_eq_cost_minus_rtct; [ | eauto | eauto ]; lia.
Qed.
End RTAforLimitedPreemptiveFPModelwithArrivalCurves.