Library prosa.analysis.facts.busy_interval.existence

Existence of Busy Interval for JLFP-models

In this module we derive a sufficient condition for existence of busy intervals for uni-processor for JLFP schedulers.
Consider any type of tasks ...
  Context {Task : TaskType}.
  Context `{TaskCost Task}.

... and any type of jobs associated with these tasks.
  Context {Job : JobType}.
  Context {JobTask : JobTask Job Task}.
  Context {Arrival: JobArrival Job}.
  Context {Cost : JobCost Job}.

Consider any valid arrival sequence.
Next, consider any schedule of this arrival sequence ...
... where jobs do not execute before their arrival or after completion.
Assume a given JLFP policy.
  Context {JLFP : JLFP_policy Job}.

Further, allow for any work-bearing notion of job readiness.
For simplicity, let's define some local names.
Consider an arbitrary task tsk.
  Variable tsk : Task.

Consider an arbitrary job j.
  Variable j : Job.
  Hypothesis H_from_arrival_sequence : arrives_in arr_seq j.
  Hypothesis H_job_task : job_of_task tsk j.
  Hypothesis H_job_cost_positive : job_cost_positive j.

Recall the list of jobs that arrive in any interval.
We begin by proving a few basic lemmas about busy intervals.
  Section BasicLemmas.

Assume that the priority relation is reflexive.
Consider any busy interval [t1, t2) of job j.
    Variable t1 t2 : instant.
    Hypothesis H_busy_interval : busy_interval t1 t2.

We prove that job j completes by the end of the busy interval.
    Lemma job_completes_within_busy_interval:
      job_completed_by j t2.
    Proof.
      rename H_priority_is_reflexive into REFL, H_busy_interval into BUSY.
      move: BUSY ⇒ [[_ [_ [_ /andP [_ ARR]]]] QUIET].
      exact: QUIET.
    Qed.

  End BasicLemmas.

In this section, we prove that during a busy interval there always exists a pending job.
  Section ExistsPendingJob.

Let [t1, t2] be any interval where time t1 is quiet and time t2 is not quiet.
    Variable t1 t2 : instant.
    Hypothesis H_interval : t1 t2.
    Hypothesis H_quiet : quiet_time t1.
    Hypothesis H_not_quiet : ¬ quiet_time t2.

Then, we prove that there is a job pending at time t2 that has higher or equal priority (with respect to tsk).
    Lemma not_quiet_implies_exists_pending_job:
       j_hp,
        arrives_in arr_seq j_hp
        arrived_between j_hp t1 t2
        hep_job j_hp j
        ¬ job_completed_by j_hp t2.
    Proof.
      rename H_quiet into QUIET, H_not_quiet into NOTQUIET.
      destruct (has (fun j_hp(~~ job_completed_by j_hp t2) && hep_job j_hp j)
                    (arrivals_between arr_seq t1 t2)) eqn:COMP.
      { move: COMP ⇒ /hasP [j_hp ARR /andP [NOTCOMP HP]].
        move: (ARR) ⇒ INarr.
        apply in_arrivals_implies_arrived_between in ARR ⇒ [|//].
        apply in_arrivals_implies_arrived in INarr.
        by j_hp; repeat split; last by apply/negP.
      }
      {
        apply negbT in COMP; rewrite -all_predC in COMP.
        move: COMP ⇒ /allP COMP.
        exfalso; apply NOTQUIET; intros j_hp IN HP ARR.
        destruct (ltnP (job_arrival j_hp) t1) as [BEFORE | AFTER];
          first by specialize (QUIET j_hp IN HP BEFORE); apply completion_monotonic with (t := t1).
        feed (COMP j_hp).
        { by apply: arrived_between_implies_in_arrivals ⇒ //; apply/andP; split. }
        by rewrite /= HP andbT negbK in COMP.
      }
    Qed.

  End ExistsPendingJob.

In this section, we prove that during a busy interval the processor is never idle.
  Section ProcessorAlwaysBusy.

Assume that the schedule is work-conserving ...
... and the priority relation is reflexive and transitive.
Consider any busy interval prefix [t1, t2).
    Variable t1 t2 : instant.
    Hypothesis H_busy_interval_prefix : busy_interval_prefix t1 t2.

We prove that if the processor is idle at a time instant t, then the next time instant t+1 will be a quiet time.
    Lemma idle_time_implies_quiet_time_at_the_next_time_instant:
       (t : instant),
        is_idle arr_seq sched t
        quiet_time t.+1.
    Proof.
      intros t IDLE jhp ARR HP AB.
      apply negbNE; apply/negP; intros NCOMP.
      have PEND : job_pending_at jhp t.
      { apply/andP; split⇒ [//|].
        by move: NCOMP; apply contra, completion_monotonic. }
      apply H_job_ready in PEND ⇒ //; destruct PEND as [j' [ARR' [READY' _]]].
      move:(H_work_conserving j' t) ⇒ WC.
      feed_n 2 WC ⇒ [//||].
      { apply/andP; split⇒ [//|].
        exact: not_scheduled_when_idle. }
      move: WC ⇒ [jo +]; apply/negP.
      exact: not_scheduled_when_idle.
    Qed.

Next, we prove that at any time instant t within the busy interval there exists a job jhp such that (1) job jhp is pending at time t and (2) job jhp has higher-or-equal priority than task tsk.
    Lemma pending_hp_job_exists:
       t,
        t1 t < t2
         jhp,
          arrives_in arr_seq jhp
          job_pending_at jhp t
          hep_job jhp j.
    Proof.
      movet /andP [GE LT]; move: (H_busy_interval_prefix) ⇒ [_ [QTt [NQT REL]]].
      move: (ltngtP t1.+1 t2) ⇒ [GT|CONTR|EQ]; first last.
      - subst t2; rewrite ltnS in LT.
        have EQ: t1 = t by apply/eqP; rewrite eqn_leq; apply/andP; split.
        subst t1; clear GE LT.
         j; repeat split⇒ //.
        + move: REL; rewrite ltnS -eqn_leq eq_sym; move ⇒ /eqP REL.
            by rewrite -REL; eapply job_pending_at_arrival; eauto 2.
      - by exfalso; move_neq_down CONTR; eapply leq_ltn_trans; eauto 2.
      - have EX: hp__seq: seq Job,
         j__hp, j__hp \in hp__seq arrives_in arr_seq j__hp job_pending_at j__hp t hep_job j__hp j.
        { (filter (fun jo(job_pending_at jo t) && (hep_job jo j)) (arrivals_between arr_seq 0 t.+1)).
          intros; split; intros T.
          - move: T; rewrite mem_filter; move ⇒ /andP [/andP [PEN HP] IN].
            repeat split; eauto using in_arrivals_implies_arrived.
          - move: T ⇒ [ARR [PEN HP]].
            rewrite mem_filter; apply/andP; split; first (apply/andP; split⇒ //).
            apply: arrived_between_implies_in_arrivals ⇒ //.
            by apply/andP; split; last rewrite ltnS; move: PEN ⇒ /andP [T _].
        } move: EX ⇒ [hp__seq SE]; case FL: (hp__seq) ⇒ [ | jhp jhps].
        + subst hp__seq; exfalso.
          move: GE; rewrite leq_eqVlt; move ⇒ /orP [/eqP EQ| GE].
          × subst t.
            apply NQT with t1.+1; first by apply/andP; split.
            intros jhp ARR HP ARRB; apply negbNE; apply/negP; intros NCOMP.
            move: (SE jhp) ⇒ [_ SE2].
            rewrite in_nil in SE2; feed SE2⇒ [|//]; clear SE2.
            repeat split⇒ //; first apply/andP; split⇒ //.
            apply/negP; intros COMLP.
            move: NCOMP ⇒ /negP NCOMP; apply: NCOMP.
            by apply completion_monotonic with t1.
          × apply NQT with t; first by apply/andP; split.
            intros jhp ARR HP ARRB; apply negbNE; apply/negP; intros NCOMP.
            move: (SE jhp) ⇒ [_ SE2].
            rewrite in_nil in SE2; feed SE2 ⇒ [|//]; clear SE2.
            by repeat split; auto; apply/andP; split; first apply ltnW.
        + move: (SE jhp)=> [SE1 _]; subst; clear SE.
          by jhp; apply SE1; rewrite in_cons; apply/orP; left.
    Qed.

We prove that at any time instant t within [t1, t2) the processor is not idle.
    Lemma not_quiet_implies_not_idle:
       t,
        t1 t < t2
        ¬ is_idle arr_seq sched t.
    Proof.
      intros t NEQ IDLE.
      move: (pending_hp_job_exists _ NEQ) ⇒ [jhp [ARR [PEND HP]]].
      apply H_job_ready in PEND ⇒ //; destruct PEND as [j' [ARR' [READY' _]]].
      feed (H_work_conserving _ t ARR').
      { apply/andP; split⇒ [//|].
        exact: not_scheduled_when_idle. }
      move: (H_work_conserving) ⇒ [jo +]; apply/negP.
      exact: not_scheduled_when_idle.
    Qed.

  End ProcessorAlwaysBusy.

In section we prove a few auxiliary lemmas about quiet time and service.
Assume that the schedule is work-conserving ...
... and there are no duplicate job arrivals.
    Hypothesis H_arrival_sequence_is_a_set:
      arrival_sequence_uniq arr_seq.

Let t1 be a quiet time.
    Variable t1 : instant.
    Hypothesis H_quiet_time : quiet_time t1.

Assume that there is no quiet time in the interval (t1, t1 + Δ].
    Variable Δ : duration.
    Hypothesis H_no_quiet_time : t, t1 < t t1 + Δ ¬ quiet_time t.

For clarity, we introduce a notion of the total service of jobs released in time interval [t_beg, t_end) during the time interval [t1, t1 + Δ).
We prove that jobs with higher-than-or-equal priority that released before time instant t1 receive no service after time instant t1.
    Lemma hep_jobs_receive_no_service_before_quiet_time:
      service_received_by_hep_jobs_released_during t1 (t1 + Δ) =
      service_received_by_hep_jobs_released_during 0 (t1 + Δ).
    Proof.
      intros.
      rewrite /service_received_by_hep_jobs_released_during
              /service_of_higher_or_equal_priority_jobs /service_of_jobs.
      rewrite [in X in _ = X](arrivals_between_cat _ _ t1);
        [ | by [] | rewrite leq_addr//].
      rewrite big_cat //=.
      rewrite -{1}[\sum_(j <- arrivals_between arr_seq _ (t1 + Δ) | _)
                    service_during sched j t1 (t1 + Δ)]add0n.
      apply/eqP. rewrite eqn_add2r eq_sym exchange_big //=.
      rewrite big1_seq //.
      movet' /andP [_ NEQ]; rewrite mem_iota in NEQ.
      rewrite big1_seq //.
      movejhp /andP [HP ARR].
      apply: not_scheduled_implies_no_service.
      apply (completed_implies_not_scheduled _ _ H_completed_jobs_dont_execute).
      apply completion_monotonic with t1; first by move: NEQ ⇒ /andP[].
      apply H_quiet_time ⇒ //.
      - exact: in_arrivals_implies_arrived.
      - exact: in_arrivals_implies_arrived_before.
    Qed.

Next, assume that the processor is an ideal-progress, unit-speed uniprocessor.
    Hypothesis H_uni : uniprocessor_model PState.
    Hypothesis H_unit : unit_service_proc_model PState.
    Hypothesis H_progress : ideal_progress_proc_model PState.

Under this assumption, we prove that the total service within a "non-quiet" time interval [t1, t1 + Δ) is exactly Δ.
    Lemma no_idle_time_within_non_quiet_time_interval:
      total_service_of_jobs_in sched (arrivals_between arr_seq 0 (t1 + Δ)) t1 (t1 + Δ) = Δ.
    Proof.
      intros; unfold total_service_of_jobs_in, service_of_jobs, service_of_higher_or_equal_priority_jobs.
      rewrite -{3}[Δ](sum_of_ones t1) exchange_big //=.
      apply/eqP; rewrite eqn_leq; apply/andP; split.
      { rewrite leq_sum // ⇒ t' _.
        have SCH := @service_of_jobs_le_1 _ _ _ _ sched predT (arrivals_between arr_seq 0 (t1 + Δ)).
        by eapply leq_trans; [apply leqnn | apply SCH; eauto using arrivals_uniq with basic_rt_facts]. }
      { rewrite [in X in X _]big_nat_cond [in X in _ X]big_nat_cond //=
                leq_sum // ⇒ t' /andP [/andP [LT GT] _].
        rewrite sum_nat_gt0 filter_predT; apply/hasP.
        have [Idle|[jo Sched_jo]] := (scheduled_at_cases _ H_valid_arrival_time sched ltac:(auto) ltac:(auto) t').
        { exfalso; move: LT; rewrite leq_eqVlt; move ⇒ /orP [/eqP EQ|LT].
          { subst t'.
            feed (H_no_quiet_time t1.+1); first by apply/andP; split.
            by apply H_no_quiet_time, idle_time_implies_quiet_time_at_the_next_time_instant. }
          { feed (H_no_quiet_time t'); first by apply/andP; split; last rewrite ltnW.
            apply: H_no_quiet_time; intros j_hp IN HP ARR.
            apply contraT; intros NCOMP.
            have PEND : job_pending_at j_hp t'.
            { apply/andP; split.
              - by rewrite /has_arrived ltnW.
              - by move: NCOMP; apply contra, completion_monotonic. }
            apply H_job_ready in PEND ⇒ //; destruct PEND as [j' [ARR' [READY' _]]].
            feed (H_work_conserving _ t' ARR').
            { by apply/andP; split ⇒ //; apply: not_scheduled_when_idle. }
            exfalso; move: H_work_conserving ⇒ [j_other +]; apply/negP.
            exact: not_scheduled_when_idle. } }
        { jo.
          - apply arrived_between_implies_in_arrivals ⇒ //.
            apply/andP; split⇒ [//|].
            apply H_jobs_must_arrive_to_execute in Sched_jo.
            by apply leq_ltn_trans with t'.
          - by apply: H_progress. } }
    Qed.

  End QuietTimeAndServiceOfJobs.

In this section, we show that the length of any busy interval is bounded, as long as there is enough supply to accommodate the workload of tasks with higher or equal priority.
  Section BoundingBusyInterval.

Assume that the schedule is work-conserving, ...
... and there are no duplicate job arrivals, ...
    Hypothesis H_arrival_sequence_is_a_set:
      arrival_sequence_uniq arr_seq.

... and the priority relation is reflexive and transitive.
Next, we recall the notion of workload of all jobs released in a given interval [t1, t2) that have higher-or-equal priority w.r.t. the job j being analyzed.
With regard to the jobs with higher-or-equal priority that are released in a given interval [t1, t2), we also recall the service received by these jobs in the same interval [t1, t2).
Now we begin the proof. First, we show that the busy interval is bounded.
    Section BoundingBusyInterval.

Suppose that job j is pending at time t_busy.
      Variable t_busy : instant.
      Hypothesis H_j_is_pending : job_pending_at j t_busy.

First, we show that there must exist a busy interval prefix.
      Section LowerBound.

Since job j is pending, there is a (potentially unbounded) busy interval that starts no later than with the arrival of j.
        Lemma exists_busy_interval_prefix:
           t1,
            busy_interval_prefix t1 t_busy.+1
            t1 job_arrival j t_busy.
        Proof.
          rename H_j_is_pending into PEND, H_work_conserving into WORK.
          destruct ([ t:'I_t_busy.+1, quiet_time_dec t]) eqn:EX.
          - set last0 := \max_(t < t_busy.+1 | quiet_time_dec t) t.
            move: EX ⇒ /existsP [t EX].
            have PRED: quiet_time_dec last0 by apply (bigmax_pred t_busy.+1 (quiet_time_dec) t).
            have QUIET: quiet_time last0.
            { intros j_hp IN HP ARR; move: PRED ⇒ /allP PRED; feed (PRED j_hp).
              - by eapply arrived_between_implies_in_arrivals; eauto.
              - by rewrite HP implyTb in PRED.
            }
             last0.
            have JAIN: last0 job_arrival j t_busy.
            { apply/andP; split; last by move: PEND ⇒ /andP [ARR _].
              move_neq_up BEFORE.
              move: PEND ⇒ /andP [_ NOTCOMP].
              feed (QUIET j H_from_arrival_sequence); first by apply H_priority_is_reflexive.
              specialize (QUIET BEFORE).
              apply completion_monotonic with (t' := t_busy) in QUIET; first by rewrite QUIET in NOTCOMP.
                by apply bigmax_ltn_ord with (i0 := t).
            }
            repeat split⇒ //.
            × by apply bigmax_ltn_ord with (i0 := t).
            × movet0 /andP [GTlast LTbusy] QUIET0.
              have PRED0: quiet_time_dec t0 by apply/quiet_time_P.
              move: (@leq_bigmax_cond _ (fun (x: 'I_t_busy.+1) ⇒ quiet_time_dec x) (fun xx) (Ordinal LTbusy) PRED0) ⇒ /=.
              by rewrite -/last0; move: GTlast; clear; lia.
          - apply negbT in EX; rewrite negb_exists in EX; move: EX ⇒ /forallP /= ALL.
             0; split; last by apply/andP; split; last by move: PEND ⇒ /andP [ARR _].
            repeat split; first by intros j_hp _ _ ARR; rewrite /arrived_before ltn0 in ARR.
            × movet /andP [GE LT] /quiet_time_P QUIET.
              apply/negP; [exact: (ALL (Ordinal LT))|] ⇒ /=.
              exact: QUIET.
            × apply/andP; split⇒ [//|].
              by move: PEND ⇒ /andP[].
        Qed.

      End LowerBound.

Next we prove that, if there is a point where the requested workload is upper-bounded by the supply, then the busy interval eventually ends.
      Section UpperBound.

The following proofs assume that the processor is an ideal-progress, unit-speed uniprocessor.
        Hypothesis H_uni : uniprocessor_model PState.
        Hypothesis H_unit : unit_service_proc_model PState.
        Hypothesis H_progress : ideal_progress_proc_model PState.

Consider any busy interval prefix of job j.
        Variable t1 : instant.
        Hypothesis H_is_busy_prefix : busy_interval_prefix t1 t_busy.+1.

Let's define A as the relative arrival time of job j (with respect to time t1).
        Let A := job_arrival j - t1.

Let priority_inversion_bound be a constant that bounds the length of any priority inversion.
        Variable priority_inversion_bound : instant instant.
        Hypothesis H_priority_inversion_is_bounded :
          is_priority_inversion_bounded_by priority_inversion_bound.

Next, assume that for some positive delta, the sum of requested workload at time t1 + delta and constant priority_inversion_bound is bounded by delta (i.e., the supply).
        Variable delta : duration.
        Hypothesis H_delta_positive : delta > 0.
        Hypothesis H_workload_is_bounded :
          priority_inversion_bound A + hp_workload t1 (t1 + delta) delta.

If there is a quiet time by time t1 + delta, it trivially follows that the busy interval is bounded. Thus, let's consider first the harder case where there is no quiet time, which turns out to be impossible.
        Section CannotBeBusyForSoLong.

Assume that there is no quiet time in the interval (t1, t1 + delta].
          Hypothesis H_no_quiet_time:
             t, t1 < t t1 + delta ¬ quiet_time t.

Since the interval is always non-quiet, the processor is always busy with tasks of higher-or-equal priority or some lower priority job which was scheduled, i.e., the sum of service done by jobs with actual arrival time in [t1, t1 + delta) and priority inversion equals delta.
          Lemma busy_interval_has_uninterrupted_service:
            delta priority_inversion_bound A + hp_service t1 (t1 + delta).
          Proof.
            move: H_is_busy_prefix ⇒ [H_strictly_larger [H_quiet [_ EXj]]].
            destruct (delta priority_inversion_bound A) eqn:KLEΔ.
            { by apply leq_trans with (priority_inversion_bound A); last rewrite leq_addr. }
            apply negbT in KLEΔ; rewrite -ltnNge in KLEΔ.
            apply leq_trans with (cumulative_priority_inversion arr_seq sched j t1 (t1 + delta) + hp_service t1 (t1 + delta)).
            { rewrite /hp_service hep_jobs_receive_no_service_before_quiet_time // /service_of_higher_or_equal_priority_jobs.
              rewrite service_of_jobs_negate_pred // addnBA; last by apply service_of_jobs_pred_impl; eauto 2.
              rewrite addnC -addnBA; first by rewrite no_idle_time_within_non_quiet_time_interval // leq_addr.
              rewrite service_of_jobs_sum_over_time_interval //.
              apply leq_sum_seq; movet II _; rewrite mem_index_iota in II; move: II ⇒ /andP [GEi LEt].
              have [IDLE|[j' SCHED]] := (scheduled_at_cases _ H_valid_arrival_time sched ltac:(auto) ltac:(auto) t).
              { apply leq_trans with 0; [rewrite leqn0; apply/eqP | by apply leq0n].
                apply: big1j' NHEP.
                by apply/not_scheduled_implies_no_service/not_scheduled_when_idle. }
              { destruct (hep_job j' j) eqn:PRIO1.
                - rewrite service_of_jobs_nsched_or_unsat//.
                  intros j'' IN; apply/andP; intros [NHEP SCHED''].
                  have EQ: j'' = j' by eapply H_uni; eauto 2.
                  by subst j''; rewrite PRIO1 in NHEP.
                - have SCH := @service_of_jobs_le_1 _ _ _ _ _ (fun i~~ hep_job i j) (arrivals_between arr_seq 0 (t1 + delta)).
                  eapply leq_trans; first by apply: SCH; eauto using arrivals_uniq with basic_rt_facts.
                  clear SCH; rewrite lt0b; apply/andP; split.
                  + apply/negP; intros SCHED'.
                    have EQ : j = j'.
                    { apply: H_uni SCHED.
                      by rewrite -(scheduled_jobs_at_iff arr_seq). }
                    subst; move: PRIO1 ⇒ /negP PRIO1; apply: PRIO1.
                    apply H_priority_is_reflexive.
                  + apply/hasP; j'; last by rewrite PRIO1.
                    by rewrite scheduled_jobs_at_iff. } }
            { rewrite leq_add2r.
              destruct (t1 + delta t_busy.+1) eqn:NEQ; [ | apply negbT in NEQ; rewrite -ltnNge in NEQ].
              - apply leq_trans with (cumulative_priority_inversion arr_seq sched j t1 t_busy.+1); last eauto 2.
                by rewrite [in X in _ X](cumulative_priority_inversion_cat _ _ _ (t1 + delta)) //= leq_addr.
              - apply H_priority_inversion_is_bounded; repeat split⇒ //.
                 + by rewrite -addn1 leq_add2l.
                 + by movet' /andP [LT GT]; apply H_no_quiet_time; apply/andP; split; last rewrite ltnW.
                 + by move: EXj ⇒ /andP [T1 T2]; apply/andP; split; last apply ltn_trans with (t_busy.+1). }
          Qed.

Moreover, the fact that the interval is not quiet also implies that there's more workload requested than service received.
          Lemma busy_interval_too_much_workload:
            hp_workload t1 (t1 + delta) > hp_service t1 (t1 + delta).
          Proof.
            have PEND := not_quiet_implies_exists_pending_job.
            rename H_no_quiet_time into NOTQUIET,
            H_is_busy_prefix into PREFIX.
            set l := arrivals_between arr_seq t1 (t1 + delta).
            set hep := hep_job.
            unfold hp_service, service_of_higher_or_equal_priority_jobs, service_of_jobs,
            hp_workload, workload_of_higher_or_equal_priority_jobs, workload_of_jobs.
            fold l hep.
            move: (PREFIX) ⇒ [_ [QUIET _]].
            move: (NOTQUIET) ⇒ NOTQUIET'.
            feed (NOTQUIET' (t1 + delta)).
            { by apply/andP; split; first rewrite -addn1 leq_add2l. }
            feed (PEND t1 (t1 + delta)); first by apply leq_addr.
            specialize (PEND QUIET NOTQUIET').
            move: PEND ⇒ [j0 [ARR0 [/andP [GE0 LT0] [HP0 NOTCOMP0]]]].
            have IN0: j0 \in l.
            { by apply: arrived_between_implies_in_arrivals ⇒ //; apply/andP; split. }
            have UNIQ: uniq l by eapply arrivals_uniq; eauto 1.
            rewrite big_mkcond [\sum_(_ <- _ | _ _ _)_]big_mkcond //=.
            rewrite (bigD1_seq j0)//= (bigD1_seq j0)//= /hep HP0.
            rewrite -add1n addnA [1 + _]addnC addn1.
            apply leq_add; last first.
            { apply: leq_sumj1 NEQ.
              case: (hep_job _ _) ⇒ //.
              by apply: cumulative_service_le_job_cost. }
            rewrite ignore_service_before_arrival//.
            rewrite -(ignore_service_before_arrival _ _ _ 0)//.
            by rewrite ltnNge; apply/negP.
          Qed.

Using the two lemmas above, we infer that the workload is larger than the interval length. However, this contradicts the assumption H_workload_is_bounded.
          Corollary busy_interval_workload_larger_than_interval:
            priority_inversion_bound A + hp_workload t1 (t1 + delta) > delta.
          Proof.
            apply leq_ltn_trans with (priority_inversion_bound A + hp_service t1 (t1 + delta)).
            - by apply busy_interval_has_uninterrupted_service.
            - rewrite ltn_add2l.
              by apply busy_interval_too_much_workload.
          Qed.

        End CannotBeBusyForSoLong.

Since the interval cannot remain busy for so long, we prove that the busy interval finishes at some point t2 t1 + delta.
        Lemma busy_interval_is_bounded:
           t2,
            t2 t1 + delta
            busy_interval t1 t2.
        Proof.
          move: H_is_busy_prefix ⇒ [LT [QT [NQ NEQ]]].
          destruct ([ t2:'I_(t1 + delta).+1, (t2 > t1) && quiet_time_dec t2]) eqn:EX.
          - have EX': (t2 : instant), ((t1 < t2 t1 + delta) && quiet_time_dec t2).
            { move: EX ⇒ /existsP [t2 /andP [LE QUIET]].
               t2; apply/andP; split⇒ [|//].
              by apply/andP; split; last (rewrite -ltnS; apply ltn_ord). }
            move: (ex_minnP EX') ⇒ [t2 /andP [/andP [GT LE] QUIET] MIN]; clear EX EX'.
             t2; split; [ | split; [repeat split | ]] ⇒ //.
            + movet /andP [GT1 LT2] BUG.
              feed (MIN t); first (apply/andP; split).
              × by apply/andP; split; last by apply leq_trans with (n := t2); eauto using ltnW.
              × by apply/quiet_time_P.
              × by apply leq_ltn_trans with (p := t2) in MIN; first by rewrite ltnn in MIN.
            + move: NEQ ⇒ /andP [IN1 IN2].
              apply/andP; split⇒ [//|].
              apply leq_ltn_trans with t_busy; eauto 2.
              rewrite ltnNge; apply/negP; intros CONTR.
              apply NQ with t2.
              × by apply/andP; split; last rewrite ltnS.
              × by apply/quiet_time_P.
            + intros j_hp IN HP ARR.
              move: QUIET ⇒ /allP QUIET; feed (QUIET j_hp).
              × by eapply arrived_between_implies_in_arrivals; last apply ARR.
              × by move: QUIET ⇒ /implyP QUIET; apply QUIET.
          - apply negbT in EX; rewrite negb_exists in EX; move: EX ⇒ /forallP /= ALL'.
            have ALL: t, t1 < t t1 + delta ¬ quiet_time t.
            { movet /andP [GTt LEt] QUIET; rewrite -ltnS in LEt.
              move: (ALL' (Ordinal LEt)) ⇒ /negP /=; apply.
              by apply/andP; split ⇒ //; apply/quiet_time_P. }
            clear ALL'; exfalso.
            have TOOMUCH := busy_interval_workload_larger_than_interval.
            have BOUNDED := H_workload_is_bounded.
            by move: (leq_trans (TOOMUCH ALL) BOUNDED); rewrite ltnn.
        Qed.

      End UpperBound.

    End BoundingBusyInterval.

The following proofs assume that the processor is an ideal-progress, unit-speed uniprocessor.
    Hypothesis H_uni : uniprocessor_model PState.
    Hypothesis H_unit : unit_service_proc_model PState.
    Hypothesis H_progress : ideal_progress_proc_model PState.

In this section, we show that from a workload bound we can infer the existence of a busy interval.
Let priority_inversion_bound be a constant that bounds the length of a priority inversion.
Assume that for some positive delta, the sum of requested workload at time t1 + delta and priority inversion is bounded by delta (i.e., the supply).
      Variable delta : duration.
      Hypothesis H_delta_positive : delta > 0.
      Hypothesis H_workload_is_bounded :
         t, priority_inversion_bound (job_arrival j - t) + hp_workload t (t + delta) delta.

Next, we assume that job j has positive cost, from which we can infer that there is a time in which j is pending.
      Hypothesis H_positive_cost : job_cost j > 0.

Therefore there must exists a busy interval [t1, t2) that contains the arrival time of j.
      Corollary exists_busy_interval:
         t1 t2,
          t1 job_arrival j < t2
          t2 t1 + delta
          busy_interval t1 t2.
      Proof.
        have PREFIX := exists_busy_interval_prefix.
        move: (H_workload_is_bounded) ⇒ WORK.
        feed (PREFIX (job_arrival j)).
        { apply/andP; split; first by apply leqnn.
          rewrite /completed_by /service.
          rewrite ignore_service_before_arrival // /service_during.
          rewrite big_geq; last by apply leqnn.
            by rewrite -ltnNge.
        }
        move: PREFIX ⇒ [t1 [PREFIX /andP [GE1 GEarr]]].
        have BOUNDED := busy_interval_is_bounded
                          (job_arrival j) _ H_uni H_unit H_progress t1 PREFIX priority_inversion_bound _ delta
                          H_delta_positive.
        feed_n 3 BOUNDED ⇒ //.
        { by apply job_pending_at_arrival. }
        move: BOUNDED ⇒ [t2 [GE2 BUSY]].
         t1, t2; split.
        { apply/andP; split⇒ [//|].
          apply contraT; rewrite -leqNgt; intro BUG.
          move: BUSY PREFIX ⇒ [[LE12 _] QUIET] [_ [_ [NOTQUIET _]]].
          feed (NOTQUIET t2); first by apply/andP; split.
            by exfalso; apply NOTQUIET.
        }
        by split.
      Qed.

    End BusyIntervalFromWorkloadBound.

If we know that the workload is bounded, we can also use the busy interval to infer a response-time bound.
Let priority_inversion_bound be a constant that bounds the length of a priority inversion.
Assume that for some positive delta, the sum of requested workload at time t1 + delta and priority inversion is bounded by delta (i.e., the supply).
      Variable delta: duration.
      Hypothesis H_delta_positive: delta > 0.
      Hypothesis H_workload_is_bounded:
         t, priority_inversion_bound (job_arrival j - t) + hp_workload t (t + delta) delta.

Then, job j must complete by job_arrival j + delta.
      Lemma busy_interval_bounds_response_time:
        job_completed_by j (job_arrival j + delta).
      Proof.
        have BUSY := exists_busy_interval priority_inversion_bound _ delta.
        move: (posnP (@job_cost _ Cost j)) ⇒ [ZERO|POS].
        { by rewrite /job_completed_by /completed_by ZERO. }
        feed_n 4 BUSY ⇒ //.
        move: BUSY ⇒ [t1 [t2 [/andP [GE1 LT2] [GE2 BUSY]]]].
        apply completion_monotonic with (t := t2) ⇒ //.
          - by apply leq_trans with (n := t1 + delta); [| rewrite leq_add2r].
          - by apply job_completes_within_busy_interval with (t1 := t1).
      Qed.

    End ResponseTimeBoundFromBusyInterval.

  End BoundingBusyInterval.

End ExistsBusyIntervalJLFP.